
Risk Management
Systems

PROCESS, TECHNOLOGY AND TRENDS

Martin Gorrod

RISK MANAGEMENT SYSTEMS

This page intentionally left blank

Risk Management
Systems

PROCESS, TECHNOLOGY AND TRENDS

Mart in Gorrod

© Martin Gorrod 2004

All rights reserved. No reproduction, copy or transmission of this
publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted
save with written permission or in accordance with the provisions of the
Copyright, Designs and Patents Act 1988, or under the terms of any licence
permitting limited copying issued by the Copyright Licensing Agency, 90
Tottenham Court Road, London W1T 4LP.

Any person who does any unauthorised act in relation to this publication
may be liable to criminal prosecution and civil claims for damages.

The author has asserted his right to be identified as the author of this work
in accordance with the Copyright, Designs and Patents Act 1988.

First published 2004 by
PALGRAVE MACMILLAN
Houndmills, Basingstoke, Hampshire RG21 6XS and
175 Fifth Avenue, New York, N.Y. 10010
Companies and representatives throughout the world

PALGRAVE MACMILLAN is the global academic imprint of the Palgrave
Macmillan division of St. Martin’s Press, LLC and of Palgrave Macmillan Ltd.
Macmillan® is a registered trademark in the United States, United Kingdom
and other countries. Palgrave is a registered trademark in the European
Union and other countries.

ISBN 1–4039–1617–9

This book is printed on paper suitable for recycling and made from fully
managed and sustained forest sources.

A catalogue record for this book is available from the British Library.

A catalog record for this book is available from the Library of Congress.

Editing and origination by Aardvark Editorial, Mendham, Suffolk

10 9 8 7 6 5 4 3 2 1
13 12 11 10 09 08 07 06 05 04

Printed and bound in Great Britain by
Antony Rowe Ltd, Chippenham and Eastbourne

v

Contents

List of figures viii

List of tables x

Preface xi

List of abbreviations xiii

PART I An Introduction to the Risk Management Process

1 What is risk management? 3
Sources and drivers of risk 5
Risk and return 10
Risk management and risk mitigation 14
Approaches to identifying and measuring risk 15
Approaches to managing risk 18
Drivers for change 22
The move to real time and on-demand risk information 26

2 The Risk Management Challenge 29
Modelling risk 29
Data requirements for risk management 36
The risk management hierarchy 37
Transactional and warehousing systems 46
Sources of risk and loss information 49
Data manipulation 51
Data issues 54
The design legacy 58

3 Functional Requirements for a Risk Management Solution 60
Risk identification and measurement 61
Asset class specific risk management 70
VaR approaches 79
The risk analysis process 83
Changes in risk with event levels and time 84
Risk analysis and reporting 85

PART II Risk Management Technology

4 The Software Development Lifecycle 93
A risk based approach to the software delivery process 97
Modelling the process of implementing a system 98
Prototyping 100
Buy versus build 101
The need for formalizing processes 105
Agile methodologies 107
Why software needs to be replaced 109
Key roles in the software process 109
Team-based development 112
Documentation of the project 115

5 Requirements Gathering and Analysis 121
Re-engineering workflow and technology 122
Requirements gathering 125
System analysis 141
The data requirements for a risk management system 151

6 System Design and Implementation 153
Physical architectural and implementation requirements 153
Achieving concurrency in processing 158
The design architecture 160
The integrated service-orientated application

architecture 161
Integration and middleware 164
Approaches to parallelism in software 171
Data management, processing and persistence 173
Data warehouses 178
Producing high performance solutions 180

7 Project Management 185
The project management process 188
Request for proposal (RfP) process 201

CONTENTS

vi

8 Quality Management and Testing 211
The software testing process 212
Total quality management 223
Validating, verifying and backtesting approaches

and models 227
Replacing existing functionality 232

9 Deployment, Configuration and Change Management 235
Defects and change requests 235
Software problem reports (SPRs) 238
Source code control 240
Maintaining traceability 245
Versioning system releases 246
Development, build and testing environments 248
Software deployment 251
Tools and process automation 256

PART III Trends in Risk Management Process
and Technology

10 The Future of Risk Management Technology 261
Risk management in the future 263
Risk transformation and cost benefit analysis 266
Strategic versus tactical 267
Structural project risk 269
Flexibility and managing the unknown risk 272
Maintaining competitive advantage 273
Development approaches 274
The component revolution 276
The integration and interface gap 278
Conclusion 279

Appendix 281
Risk management system providers and consultants 281

Index 289

vii

CONTENTS

vii i

List of figures

1.1 Sources and drivers of risk in an organization 6
1.2 The risk management temple supporting profit 8
1.3 Inadequate risk management support can result in organizational collapse 9
1.4 The risk–return equation 10
1.5 Risk management improvement cycle 15
1.6 Continuum of approaches to risk management 16
1.7 Risk management hierarchy and information filtering 19

2.1 Modelling risk and relating it to the real world 30
2.2 Risk model aggregation 32
2.3 Input and model uncertainty 33
2.4 Data requirements for risk management 36
2.5 Two extreme approaches to system development 38
2.6 Risk aggregation at the desk level 43
2.7 Typical organizational structure 50
2.8 Risk decomposition process 52

3.1 The communication gap between users and developers 61
3.2 The dependency chain of pricing and risk models 64
3.3 Example of an expected distribution of P&L 66
3.4 Impact probability matrix 68
3.5 Approaches to determining the operational risk probability

distribution for the magnitude of loss when an event occurs 78
3.6 Statistical risk analysis process 83

4.1 The reality of the software development cycle 94
4.2 The waterfall lifecycle model 95
4.3 The V model for software development 96
4.4 The models used in the development lifecycle 99
4.5 Buy versus build continuum 101
4.6 Trade-off between cost of process and cost of correcting defects 106
4.7 Avoiding the barriers to team communication 112

ix

L IST OF F IGURES

5.1 Software bridging the functionality gap 123
5.2 Process for system change and requirements gathering 126
5.3 The attitude and influence matrix of those involved in a project 128
5.4 Convergent and divergent approaches to problem solving 130
5.5 The system reverse engineering process 131
5.6 User interaction for requirements gathering 132
5.7 Hierarchy of requirements gathering 136
5.8 Viewing the functionality of a system 138
5.9 The delivery continuum 140
5.10 The transformation of requirements into an analysis model 142
5.11 Example of an entity relationship diagram linking 3 entities 144
5.12 Hierarchy of data flow diagrams 146
5.13 Simple state transition diagram for displaying the market

risk associated with a market price change 147
5.14 Example of a swim lane diagram for entering into a financial

transaction and monitoring risk 148
5.15 Example decision tree for trading a financial instrument 150

6.1 Using TP monitors to manage the use of scarce resources 158
6.2 The integrated application architecture for risk management 162
6.3 Coupling of systems throughout the organization 170
6.4 In-memory risk aggregation and persistence 173
6.5 Hiding the location and implementation of data persistence 174
6.6 Approaches to accessing shared data 176
6.7 Leveraging existing functionality within the organization 177
6.8 Efficiently extracting data from data warehouses 180

7.1 The project management process 188
7.2 The project execution process 192
7.3 The interrelationship of the four main project drivers 195
7.4 Example of an RAG report for project progress 198

8.1 The testing process 222
8.2 Interaction of model development,validation, verification

and testing groups 228
8.3 The system reconciliation process 233

9.1 The defect and change request management process 236
9.2 Non-conflicting and conflicting changes of artefacts under

source code control 241
9.3 Example of a branching diagram 243
9.4 The impact of change requests on traceability 246
9.5 The different software environments used within a project 249
9.6 Changes arising from the upgrade process 254

10.1 The interaction of different types of risk 264
10.2 The cost–benefit equation 266
10.3 Strategic project drift 268
10.4 The strategic road map 268
10.5 The move towards common frameworks 271
10.6 Approaches to developing risk management solutions 275

x

List of tables

1.1 Approaches to risk measurement in the new Basel Accord 26

2.1 Advantages and disadvantages of silo and centralized system solutions 39
2.2 Complexity of the reconciliation issue between different levels

of the risk hierarchy 45
2.3 Comparison of data requirements for transactional and data

warehouse systems 47
2.4 Comparison of complexity and requirements at each level

of the risk hierarchy 48
2.5 Examples of the advantages and disadvantages of different

approaches to risk mapping 54

3.1 Advantages and disadvantages of VaR approaches 82

4.1 Comparison of buy versus build 102

5.1 Comparison of textual and diagrammatical descriptions of requirements 137

6.1 Trade-offs for global system design of centralization versus
localization of data and processing 175

7.1 Example checklist of questions regarding a vendor’s risk
management solution 206

7.2 Example checklist of questions regarding a market data
vendor’s solution 207

xi

Preface

The aim of this book is to provide a ‘whirlwind’ tour of risk manage-
ment, and the processes and technical issues facing the risk manager and
risk technologist within a typical investment bank. The recent climate,
both regulatory and economic, has meant that monitoring and managing
risk, both in terms of financial risk and the risk of projects and process
failures, is more important now than ever before. The impending Basel 2
Accord is extending the regulatory monitoring of risk to be more
complex and complete in its analysis. Constant ongoing innovation
within the financial marketplace is resulting in ever more complex finan-
cial transactions and processes. But pressure on margins and costs means
that these must be achieved with reduced budgets and in shorter
timescales, if first mover advantage is to be achieved.

It is difficult for any individual to be an expert in all the technical and
business issues within a financial institution, but the nature of risk
management, with its extreme breadth and coverage, means that this is
increasingly becoming a requirement for those involved in the risk
management process. Risk management is becoming more integrated not
only across the different types of risk but also into the control and
management of the business processes within the financial organization.
This book will help those in this unenviable position, by offering a
complete overview and understanding of these issues. Part I provides an
introduction to exactly what risk management is and the current regula-
tory and external market drivers that are impacting the development of
risk management systems. This should help any technologist to under-
stand the scope of the area he is working in and provide the risk manager
with another perspective on his field.

Part II goes on to highlight the issues in developing risk management
systems, covering the entire software lifecycle. The development of any

PREFACE

xii

system is not only about technology but also about understanding the
business environment and the uses that system will be put to. It also
requires processes and approaches to ensure that any risk management
project succeeds. Risk is inherent in the software development process
and needs to be managed just as the proposed system will need to
manage (other) risks within the organization. This section of the book
should help the risk manager to understand the complexity of the soft-
ware development process so that it can be more efficiently managed and
controlled. It should also help risk technologists to appreciate other stages
of the software development process, so that they have a fuller under-
standing of their importance within this process. The software develop-
ment process is broken down in a fairly formal manner which provides a
more rigorous and structured perspective on the different steps in this
process. The aim is to improve understanding and the quality of any
approach and, in so doing, help to reduce development risk.

Finally, Part III highlights some of the business and technical drivers
that will impact the development of the next generation of risk
management systems. This is a personal view, selecting some of the
key drivers that I have witnessed as a consultant in the investment
banking arena.

I would like to thank a number of individuals for their comments and
assistance in writing this book. The genesis of it came from a number of
ideas that evolved out of courses and presentations produced by myself,
Jeremy Tugwell and Peter Devlin. I would also like to thank many of my
colleagues from Bankers Trust, Merrill Lynch, Credit Suisse First Boston
and Iris Financial, with whom I worked and who helped to provide an
environment that allowed these ideas to develop.

I would especially like to thank my wife Sarah for her patience and
assistance with the writing of this book, Peter Devlin for his help in
proofreading many of the chapters and providing valuable feedback,
Bryan Davidson for many useful conversations and observations,
Andrew Gill for countless technology discussions and comment, as well
as Rebecca Bond for providing numerous stylistic pointers both in this
book and many other articles. Any remaining omissions or inaccuracies
within this book, however, remain mine. Finally I would like to thank
everyone at Palgrave Macmillan and the team at Aardvark Editorial for
their help and support in bringing this book to publication.

To the best of my knowledge, all appropriate acknowledgements and
copyright notices have been included, but if any have inadvertently been
omitted the publishers will be pleased to make the appropriate changes
in future versions of this book.

xii i

CHAPTER 1

List of abbreviations

.NET Microsoft’s web services
strategy for distributed
applications and system
connectivity

ACID atomicity, consistency, isolation
and durability

ATS alternative trading system
BA business analyst
BIS bank of international settlements

otherwise known as the Basel
committee on banking
supervision

CAPM capital asset pricing model
CBD component-based development
CMM capability maturity model
COM component object model
COM+ extension of the component

object model
CORBA common object request broker

architecture
DCOM distributed component object

model
DNA distributed interNet applications

architecture
DOM distributed object-orientated

middleware
EAI enterprise application

integration
ECN electronic communication

network

ERD entity relationship diagram
FX foreign exchange
GL general ledger
GUI graphical user interface
HSM hierarchical storage management
IDL interface definition language
IR interest rate
IRB internal ratings-based (methods)
ISDA International Swaps and

Derivatives Association, Inc.
IT information technology
J2EE java 2 platform, enterprise

edition
KRI key risk indicator
LTCM Long Term Capital Management
MOM message-orientated middleware
MTS Microsoft transaction server
NDA non-disclosure agreement
OLAP online analytical processing
OLTP online transaction processing
ORML operational risk mark-up

language
OTC over-the-counter (or customised)
P&L profit and loss
PC personal computer
PM project manager
QA quality assurance
RAG red, amber, green
RAID redundant array of independent

disks

xiv

RAROC risk-adjusted return on capital
RMI remote method invocation
RPC remote procedure call
RUP Rational unified process
SMART specific, measurable, achievable,

relevant and timely
SOAP simple object access protocol
SPR software problem report
SQL structured query language

STP straight through processing
TP transaction processing
TQM total quality management
UAT user acceptance testing
UML unified modelling language
WSDL web services description

language
XML extensible mark-up language
XP extreme programming

LIST OF ABBREVIATIONS

PART I

An Introduction
to the Risk

Management
Process

This page intentionally left blank

3

C H A P T E R 1

What is risk
management?

In the current volatile markets at the beginning of the new millennium,
where newspaper headlines inform us how much money has been wiped
off the stock market in a bad day or lost in the bankruptcy of a company,
risk management is a key phrase. But what do we mean by risk manage-
ment and why are regulators so concerned with this topic?

Risk management is the application of analysis techniques and the
definition of measures to quantify the amount of financial loss (or
gain) an organization is exposed to, when certain unexpected and
random changes and events occur. These events range from changes in
observable or derivable market data (such as prices, or price volatility),
process related failures, or credit (payment default type) events. Risk is
therefore all about uncertain rather than definite outcomes. This uncer-
tainty is not an undesirable thing. It is, however, important that the
organization is aware of the impact of any outcomes that may occur
and their implication for its profitability. For these risk measures or
metrics to be of use, the calculated risks and actual losses arising
should correlate. If this is not the case, the information on which the
risk analysis is based, or the analysis itself, is either incorrect or inac-
curate and must be rectified for the information to be of use. Even
where it is thought that the risks are well understood, the risk manager
needs to be constantly looking for previously unidentified risks, or
inherent assumptions and failings in the calculation and management
of those risks. This is especially true when these risks may only become

evident in extreme market conditions. If these risks are not identified
and controlled, the organization is likely to suffer the same fate as that
of Long Term Capital Management (LTCM), the US hedge fund that
came close to financial collapse due to unexpected market events and
behaviour in 1998.1

Financial markets enable participants to raise capital and exchange
risks, so that one participant’s risk becomes another’s potential reward or
offsets a risk they already have. Market participants then structure and
trade these risks so as to either remove (that is, hedge) or take on additional
risk in return for a given benefit or expected return; this latter activity is
known as speculating. Risk may also be retained or additional risk taken on
if there is a belief that the market is mispricing the cost of taking on this
risk. This activity is known as relative value or richness/cheapness analysis and
can have varying levels of sophistication. The aim of this trading strategy
is to try to benefit from any mispricing by buying or selling the instru-
ments involved on the assumption that the market will correctly price
them in the future (resulting in a greater than expected return). If these
mispricings result in a transaction which leaves no residual risk but rather
a guaranteed return or profit, then this is called arbitraging. Arbitraging can
also cause (through variations in supply and demand resulting in changes
in prices) the mispricings to disappear and so plays a vital role in the finan-
cial markets in ensuring different financial instruments are fairly priced.

The brokers or intermediaries in this process earn commission by
linking the two sides of a transaction together, exposing themselves to the
minimum level of indirect risk while participating in the process. Market
makers, where they exist in certain financial markets, add liquidity to the
market by always being willing to either buy or sell a given financial
instrument. These market participants are all taking different risks and
making profits based on their unique business model. For example,
market makers will try to maintain a relatively flat trading book with
limited downside risk, but will make their profit from the bid/ask spread
(the difference between the price financial instruments are bought and
sold at). As a result, the participants in financial markets all have unique
definitions and appetites for risk and require different tools to manage it.
This explains why asset managers, hedge funds, corporate treasury
departments and investment banks all require different tools and infor-
mation to manage and control their risk profile while supporting their
business model. It is therefore difficult to provide a ‘one size fits all’
approach to risk management. In particular, even within investment
banks, each trading style results in its own unique risks that may differ
greatly from those of its competitors.

RISK MANAGEMENT SYSTEMS

4

Directly or indirectly, people will only take on additional risk if they
believe they can profit from it. However, no one will knowingly take on
risks that could (in the event of probable market events) result in the
destruction of the organization. It is this systematic risk that regulatory
authorities focus on, ensuring that the failure of any one financial institu-
tion does not result in a domino effect that causes the entire financial
system to collapse. The importance of risk measurement in this process
cannot be underestimated. It is only once risks can be measured that they
can be managed and controlled.

The role of technology in risk management cannot be overstated. More
complex organizational processes and financial instruments, together
with rapidly changing external market conditions, have led to the
requirement for more advanced models and faster computers to ensure
all the risks are captured, modelled and understood in a timely manner.
Even when trading simple financial instruments, the number of positions
(or net transactions) and their different characteristics require complex
visualization and reporting tools in order to ensure that there are no
excessive concentrations or unexpected correlated exposures.

In the past, the unique requirements of an organization, its IT
environment and source of competitive advantage have led to the
assumption that unique solutions and sets of tools are required to
manage risk. Such ground-up approaches have had a high likelihood of
failure, with everything from process to underlying systems up for rede-
velopment. Consolidation in the financial industry, together with
convergence in opinions and approaches, has however shown that this
may no longer be the case. Although the context of this problem
(whether technological, business model, organizational structure or
political) is still often unique, the general core concepts and develop-
ment approaches are becoming more standardized. As a result, the time
is fast approaching for financial institutions to concentrate on what is
unique to them and leverage what is now commonly accepted as generic
or best practice in the industry. Much of the functionality required to
create a risk management solution may already exist within the organ-
ization or can be purchased from external software vendors.

SOURCES AND DRIVERS OF RISK

The occurrence of unexpected losses within the organization is driven
by the evolution of various internal or external risk events (Figure 1.1).
These risk events range from changes in the market prices of traded

5

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

instruments, an increase in traded volumes, or the bankruptcy of a
company. In themselves, these events need not result in a financial loss.
Whether this occurs, and the magnitude of any loss will depend on
the specific sources of risk within the organization. For example, the
bankruptcy of a company like Enron2 will only result in losses for those
organizations that hold positions in Enron equity, bonds or outstanding
loans to the company. A financial institution that has no exposure will
have no unexpected loss.

Although all financial institutions are exposed to the same external
risk events and may have many internal risk events in common, the
possibility and size of a financial loss (that is, risk) will depend on the
unique set of sources of risk within the organization itself, and will differ
greatly from organization to organization. It will depend on the instru-
ments traded and any risks retained, as well as on the people, processes
and technology.

RISK MANAGEMENT SYSTEMS

6

Figure 1.1 Sources and drivers of risk in an organization

Financial Impact

DRIVERS SOURCES

Risk Events

External

Market price changes

Company defaults

Internal

Increase in trading volumes

Staff motivation

Financial instruments

Process, people or

technology failures

Risk reduction and mitigation typically focus on the sources of risk, since
these are internal to an organization and therefore under its control. Internal
risk drivers, which are often associated with operational risk, may also be
influenced. For example, if a system cannot handle significant trading
volumes without a high-level of risk of failure, it is possible for the organ-
ization to reduce this trading volume until the problem has been addressed.

Risk management, however, focuses on both the sources as well as the
drivers of risk events. It brings these dimensions together in order to
determine what losses could occur, the events that cause them to occur
and the likelihood of those events occurring. As a result, risk can be
viewed and broken down in to either of these dimensions. At the most
generic level, risk within an organization is typically thought of in terms
of the following categories of risk events:

Credit risk
This is the risk arising from changes in the (perceived) credit quality or
likelihood of a company or counterparty involved in a financial transac-
tion to default on its liabilities.

Market risk
This is the risk arising from changes in underlying market variables (not
credit related) such as commodity, bond or equity prices, interest rates,
option volatility and so on.

Operational risk
This is the risk arising from events that cause losses or reduced future
income that result from people, process and technical or systems failure,
buildings and infrastructure failings and other external events such as
natural disasters. The term is often used to describe any type of risk that
is not classified as market or credit risk.

Market risk and credit risk differ dramatically from operational risk
in that they are typically related to pricing issues and risks directly
arising from a financial transaction. There can, however, be problems
in categorizing risk as either market or credit risk. The price of a credit
derivative or an equity share can be viewed as either credit or market risk,
as although the price is quoted in the market this will be impacted by
various credit events affecting the underlying company. As a result, these
risks are often referred to under the generic title of pricing risk.

Risks may also be viewed in terms of the sources of risk, which will
be directly attributable to an actual loss should a given risk event occur:

7

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

■ Product/instrument type

■ System or staff responsible for source of risk

■ Business line

■ Geographical region.

Risk hierarchies are often used to break down risks and actual losses
according to either various decompositions of the sources or the type
of event that gives rise to that risk or loss. The structure of any hier-
archy will depend on the organization’s requirements; for example, it
may be broken down by business line and then into credit, market or
operational risk type events, or market risk broken down by
geographical region. For losses arising from sources of operational
risk, there may however be problems in quantifying intangible losses
such as reputational damage or the extent of liabilities arising from
future legal action.

The management of these three primary risk event groups (market,
credit and operational risk) supports the organization in its quest for profit
(Figure 1.2). In its aim to be profitable, each pillar must be well constructed
and support the organization in managing the risk of unexpected losses.

RISK MANAGEMENT SYSTEMS

8

Figure 1.2 The risk management temple supporting profit

Operational

Risk

Management

Profit

Market Risk

Management

Credit Risk

Management

9

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

Figure 1.3 Inadequate risk management support
can result in organizational collapse

Profit

Market Risk

Management

Credit Risk

Management

D
efin

e

M
onitor

M
easure

M
itigate

Deconstructing each pillar, it is possible to break this requirement down
into its constituent parts. In order to effectively manage risk it must be:

■ Defined: How risk is defined and what events cause this risk to occur

■ Monitored: Organizational structure and processes for monitoring and
controlling risk within the organization

■ Measured: Access to data and measurement of the risk arising

■ Mitigated and communicated: A process for removing risk where neces-
sary or where the risk is unacceptable as well as communicating the
risks that are being taken.

Failure in any of these levels will result in a weak pillar that will crumble
and collapse, with a sudden and unexpected loss that will have disas-
trous impact on the organization (Figure 1.3).

The role of technology in the risk management process is to assist the
organization throughout each risk pillar; to support in the obtaining of
risk data, to measure risks, communicate the results and to help miti-

gate operational risk. Measurement of risk will require the gathering of
information concerning the current state of the company (comprising
financial positions, loss data, current process flow) as well as external
and internal information concerning the likelihood and occurrence of
various risk events.

RISK AND RETURN

Organizations focus on leveraging any strengths or competitive advan-
tage they have in order to obtain the maximum amount of profit or return
for a given level of risk; the higher the level of risk taken, the greater the
expected profit or return (Figure 1.4). The given level of risk that the
organization is willing to accept should be defined as part of the risk
management process and indicates the organization’s appetite for risk.
The aim of each business unit is then to maximize the level of return for
the defined level of risk that can be taken.

Economic and financial models tell us that markets provide different
levels of return for different types and levels of risk.3 For example, based
on the capital asset pricing model (CAPM),4 the market does not reward
participants for taking on equity-specific risk and not adequately diversi-
fying their portfolios. Economic capital calculations are often used to
explicitly convert the level of risk to the amount of capital that is required

RISK MANAGEMENT SYSTEMS

10

Figure 1.4 The risk–return equation

Return Risk

to support that risk taken by the organization, in line with the institution’s
target financial strength. Economic capital provides management with a
standardized unit for comparing and discussing opportunities and threats.
Economic capital numbers can also be multiplied by an institution’s equity
hurdle rate (the minimum acceptable rate of return required), to offer
a ‘cost of risk’ number that is comparable to other kinds of bank expenses.
This and associated approaches such as risk-adjusted return on capital
(RAROC)5 are often used to ‘charge’ for capital used by a given business
line. Economic capital calculations are then used by senior management to
ensure both that capital is correctly allocated, and, using profit and loss
(P&L) figures, that an adequate return is being obtained for its use.

Given that risk management is important and excessive risk above the
organization’s risk appetite should be reduced wherever possible (espec-
ially operational risk which tends to have a negative impact on current or
future profitability), one could be forgiven for believing resources should
always be aimed at risk reduction wherever possible. Indeed, for organi-
zations where the measurement and reduction of risk is viewed as para-
mount, this is indeed what happens. This behaviour, however, highlights
a number of key points from Kaplan and Norton’s research on balanced
score card approaches to measuring performance within the organi-
zation.6 Their research highlighted that:

What you measure is what you get
People modify their behaviour so as to achieve the targets they are
measured against. They also tend to ignore those targets they are not
measured against.

No single measure can be completely appropriate
It is difficult for a single number or measure to truly define any desired
behaviour or encapsulate risk.

Any measures used must provide a balanced view
The solution to the above is to use a number of different measures and
monitor and combine them in a balanced manner.

The first two points have interesting implications for risk manage-
ment; financial institutions and traders tend to trade in a manner that
maximizes their expected return given their risk limits or any regulatory
constraints. If some forms of risk are monitored and others are not, then
it is not unusual to see excessive transactions that exploit this. Traders
will seek to obtain additional return by taking on this unmeasured, and

11

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

uncharged for, risk. This is clearly not an ideal situation for the organ-
ization. The second implication is that any single view of risk is unlikely
to completely capture all the risks within an organization. Multiple views
and approaches are therefore critical, in order to ensure that all risk expo-
sures are understood and monitored.

As a result, if all that is ever measured is risk and risk reduction is the
key performance indicator, then the organization will focus all its
resources on risk reduction at the expense of everything else. This
includes spending more on removing risks than could ever be lost should
that risk be realized. There are many views of the organization. For
example:

■ Risk reduction: How do we reduce all types of unwanted risk?

■ Financial: How does the organization survive?

■ Internal: How does the organization obtain competitive advantage in
the market?

■ Stakeholder: How do our customers and shareholders view us?

Any financial institution will have many different perspectives and
these may change over time depending on market and internal condi-
tions. This is often the source of many of the political and structural
issues that the IT manager will face in implementing a risk manage-
ment solution. In particular, most organizations will ensure that any
approach to risk management not only considers the risk/reward
calculation but also:

■ Avoids risk reduction at the expense of survival

■ Focuses on strategy and vision rather than on possibly inappropriate
controls.

As has often been noted, the only manner in which risk can be
completely removed is to withdraw the financial institution from the
market. Although this is an extreme step, it can be a valid strategy if the
total expected return (after considering all costs and risks) from being in
a particular market is inadequate to cover capital costs. This is the
strategy that Bank of America took in March 2003 with its European
equity market making and research businesses.7

The balanced scorecard does however highlight that any risk manage-
ment and also any IT project management process must always try to:

RISK MANAGEMENT SYSTEMS

12

■ Articulate goals

■ Define measures for each goal

■ Monitor

■ Define a metric for combining the different measures

■ Aim to align key aspects of any measures in a coherent manner

■ Take remedial action if the measures deviate from those desired or
expected.

The alignment and concurrent use of the terms operational efficiency and
operational risk are examples of how operational risk and other efficiency-
based measures are being combined; by reducing operational risk, organi-
zations are also aiming to improve operational efficiency at the same time.
Given that there are many options for reducing operational risk within an
organization, prioritizing those that also improve efficiency (that is, improve
return) is clearly the best approach. The only outstanding issue is how to
quantify the efficiency improvement and how to measure the risk reduction.

When considering any IT projects within the organization the aim
should be to:

Make the risk/reward equation more explicit
This will require project managers to clearly specify any benefits and risks.

Encourage the efficient use of budgets
Budgets should be allocated to those projects that provide the greatest
benefit for an acceptable level of risk.

Change IT spending in risk management from being a cost centre to being a
profit centre
Using technology to control and reduce risk has a clearly defined benefit.
As a result, technology spending should not always be seen as a cost to
the organization.

Unfortunately, there are difficulties in that:

■ There are no standard approaches for achieving the previously listed
aims.

■ Quantifying and comparing different types of operational risk mean
that it is difficult to formalize the risk/return calculation.

13

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

■ Approaches for comparing risk tend to focus on well-behaved distri-
butions rather than the impact of extreme risk events that can
destroy the organization. Losses arising from fraudulent traders and
stock market crashes may be very unlikely but their impact can be
catastrophic.

■ Defining return when it is not specifically identifiable in any profits.
For example, efficiency gains and preventing losses from occurring
can be difficult to quantify.

■ There is a danger of overfocusing on current costs and risks at the
expense of strategic survival.

RISK MANAGEMENT AND RISK MITIGATION

The risk management process breaks down into a cycle of continual
improvement in identifying, monitoring, managing (including risk
mitigation) and testing, as outlined in Figure 1.5. Many of the activities
highlighted in Figure 1.5 should become clearer through the rest of this
book. Any risk management process and systems must support this
cycle, continually evolving as new risks are identified and as risk
policy evolves. There are three approaches to managing risk within the
organization:

1. To do nothing because the risk is inherent in the business, or the cost
of reducing the risk will outweigh the benefits of any risk reduction.
This is all part of the process of allocating the risk appetite of the
organization. It assumes that the level of risk is acceptable and that the
current capital base can absorb any losses.

2. Contingency-based approaches where the impact of events is reduced
by offsetting sources of risk through hedging or insurance.

3. Risk reduction arising from limiting the impact of risk events through
the removal of those sources of risk. This may be by exiting the
business, outsourcing and transferring liabilities, reversing or securi-
tizing financial positions,8 improving processes or other operational
risk reduction techniques that remove sources of risk within the
organization.

Whatever the approach taken, it is important that the cycle continues as
a constant ongoing process.

RISK MANAGEMENT SYSTEMS

14

It is neither possible nor desirable to mitigate all risks within the
organization. Instead they should be understood and categorized as to
whether they are avoidable or unavoidable based on the source of the
risk and the risk policy. Avoidable risks should be prioritized and
addressed, whereas unavoidable risks can only be either transferred
through outsourcing, or removed through termination of the business.
Where risk is retained, adequate planning should be undertaken to deal
with any event that might occur.

APPROACHES TO IDENTIFYING AND MEASURING RISK

There is a continuum of possible approaches to identifying and
measuring risk, ranging from the qualitative to the quantitative (Figure
1.6), which will be discussed further in Chapter 3. Quantitative
approaches are typified by those where the data used in the risk analysis
can be precisely modelled and measured. Where it is not possible to accu-
rately calculate or categorize risks, more qualitative approaches can be

15

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

Figure 1.5 Risk management improvement cycle

Manage
and Control

Document
and Test

Compare risk taken to risk appetite

Risk mitigation

Limit management

Data Mining/OLAP, Custom Reports

Back testing

Explaining P&L

Identify weakness in
process

Data aggregation

Data mapping

Risk metric calculation

Risk assessment

New business approval

Identify

Measure
and
Monitor

Manage
and

Control

used with broad categorizations of the likelihood, level and source of any
risk. These approaches can however lead to highly subjective assess-
ments. The precise position of each methodology in Figure 1.6 will
depend on the precise implementation; the positions should be taken as
being only indicative.

Quantitative approaches are generally preferable to qualitative
approaches, simply because they are more tractable for mathematical
models and can enable risks to be analysed in a more objective manner.
Whichever approach is taken, it is important to obtain the data as
objectively as possible. Human judgement is notoriously fallible,9

leading to a number of common potential biases in the data used to
measure risk:

Availability bias

■ Events are believed to be more frequent if they come to mind easily

■ The likelihood and impact of dramatic events tend to be overesti-
mated (and those that are less dramatic are underestimated).

RISK MANAGEMENT SYSTEMS

16

Figure 1.6 Continuum of approaches to risk management

QuantitativeHedge ratios and

equivalent positions VaR

Causal

models
Market sensitivities

Concentration

analysis Scenarios
Correlated

scenariosStress testing

Exposure

based
Statistical

based
Key risk indicators

Catastrophic impact

matrices Likelihood/impact

matricesAudit

Risk assessment

Qualitative

Overconfident bias

■ People tend to be overconfident in their own opinions

■ People tend to believe that they are correct more often than is justified.

Confirmation bias

■ People tend to stick to their initial judgements

■ Notice confirming evidence

■ Dismiss contradictory evidence.

Hindsight bias

■ People feel they were more certain about their decisions and judge-
ments than they actually were at the time.

Despite this, even if risks are viewed as subjective and unquantifiable
(such as reputational risk), it is important that they are not ignored, but
are captured and monitored in some manner. The greater maturity of risk
modelling within credit and market risk will tend to result in more quan-
titative approaches to risk management, whereas the less well-defined
area of operational risk will often still rely on qualitative-type approaches
and can be more susceptible to subjective judgements.

Statistical approaches to risk focus on the likelihood (or probability) of
various risk events occurring, and the magnitude of any loss when they
do occur. They are characterized by predicted probability distributions of
expected returns or statistical measures such as confidence intervals,
order statistics, variance and expected values,10 which associate the
magnitude of a possible loss with different probability levels. Statistical
approaches are typically of more use at the portfolio rather than the
individual position level, considering the correlation and offsetting
movements of hedge positions to give an aggregated loss profile. They
also highlight the link between risk and volatility (or variance): the wider
the distribution of returns about the mean (or expected value), the higher
the level of uncertainty and risk. There is, however, a danger in using
single statistical measures to summarize complex risks within an organi-
zation. As a result, although a single figure can act as a warning indicator
(when compared over time), it is important to understand how the risks
within the organization combine to generate this figure.

Exposure-based approaches concentrate on sources of risk and
the possible magnitude of any loss given that a defined event occurs. They
are characterized by market sensitivities that indicate changes in the value

17

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

of financial instruments due to market price changes or as hedge instru-
ment positions that have an equivalent risk.11 The exposure-type
analyses tend to dominate in flow-based (high volume, high liquidity)
trading where traders and credit departments are concerned with
hedging and removing unwanted exposure. This is achieved by trading
instruments with offsetting risks or by managing credit lines and collat-
eral so that counterparty exposure is constrained or minimized.

Exposure-based approaches are also used at the senior management
level to ensure that risk is adequately diversified across different
markets, and guard against low probability, catastrophic or extreme
market behaviour (such as market crashes). This will ensure that such
events do not result in too significant a loss that could destroy the organ-
ization. Statistical and expected loss measures, however, tend to domi-
nate at the senior management level, as well as being used by regulatory
authorities to ensure that financial institutions maintain enough capital
to cover unexpected or extreme market events. These measures are also
used to quantify risk when charging economic capital to individual desks
and business lines.

APPROACHES TO MANAGING RISK

How an organization is risk managed very much depends on its business
model, the instruments it trades in and the regulatory environment, as
well as what risks are being taken and how they are modelled. For
example, a brokerage that doesn’t take its own proprietary positions but
does have significant settlement risk has a very different risk profile from
a hedge fund or proprietary trading desk that retains significant trading
positions over a long period of time. In this book we will focus on the
complex problems faced by the security houses and investment banks
that typically have to handle high trading volumes and complex struc-
tured instruments across many types of financial instruments. Many of
the ideas transfer to other types of organizations but, as mentioned previ-
ously, they will have their own unique risk characteristics, which must be
captured and monitored.

Investment banking is all about taking risks – whether market, credit
or operational – and then monitoring, controlling and modifying those
risks in order to obtain the desired risk profile with the maximum
return. As a result, systems that support the monitoring of this risk and
ensure that it is kept within predefined limits are an essential business
control. These limits may be based on various decompositions of the

RISK MANAGEMENT SYSTEMS

18

risk within the organization; by counterparty, type of financial instru-
ment or asset class, country, maturity of transaction, and so on,
resulting in complex limit monitoring hierarchies. This control aspect of
risk management leads to it being performed independently of the
business areas responsible for generating those risks. This may also be
a regulatory requirement.

Risk management occurs at various levels within a bank, with each level
providing the risk information relevant to the management at that level,
and also acting as an information filter (Figure 1.7). This effectively reduces
information overload for more senior management but ensures that those at
each level have the correct detail of information to manage the risks they are
responsible for. Although the precise hierarchy and number of levels vary
from organization to organization, the general approach is to have:

■ At the organizational level, the senior management will be monitoring
the overall risk profile of the organization. They will be viewing high-

19

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

Figure 1.7 Risk management hierarchy and information filtering

level risk and concentration measures, ensuring that trading in
different locations and business lines does not result in an unaccept-
able aggregate risk profile where the occurrence of certain events can
result in a significant loss. Because of the volume of distinct individual
risks that make up the aggregate risk profile for the organization, these
will have been mapped into a smaller number of equivalent risks.
Typically, there will be a focus on potential loss calculations, through
the use of statistical methods, as well as on the running of scenarios
that stress the sources of risk within the organization to ensure
unlikely events do not result in unacceptable losses. This information
enables them to instruct business heads to modify these exposures or
to place macro-level hedges, and generally to decide how risk capital
should be deployed, based on observed risk and return. This is also
the level at which regulatory risk reporting and capital calculations are
performed. Although the requirement is generally for high-level,
aggregated information, there is often a need to be able to ‘drill down’
into finer detail if required.

■ At the desk and/or business level senior heads of trading will be looking
at the breakdown of the higher level risk measures for their individual
business unit(s). They will monitor how risk capital is being utilized as
well as how any risks have changed over time or will vary as other
risk events occur, and how individual sources of risk combine into an
aggregated risk profile. At this level and below, risk ownership usually
occurs. The business is responsible for and owns the risk – and has
responsibility for ensuring that those risks are managed correctly.

■ Finally, at the trader/desk level the focus is on monitoring positions and
analysing relative value, risk exposures and hedge equivalent positions
so that a trader can either take on, remove or hedge excessive risk.

Throughout this hierarchy, risks are controlled by comparing risk
levels against defined limits. The limit structure should cover all the risk
types mentioned previously but tends to focus on credit (including coun-
terparty credit limits) and market risk. As part of a balanced approach to
risk management, some of these limits may be defined as hard (cannot be
broken) or soft (may be temporarily exceeded with management
approval). This ensures that controls to limit risk do not inadvertently
prevent certain highly profitable transactions being performed. As it is
difficult for a formalized limit structure to completely control the risks
taken within an organization, a risk management department will
support this process. This department will analyse the risk information
and ensures all risks are understood and acceptable to the organization.

RISK MANAGEMENT SYSTEMS

20

The risk management process is also validated by ensuring that the
reported exposures or risks are consistent with actual events and any
resulting P&L. For example, if the risk management process predicts
that $100 million may be lost once in every 10 days then any such
losses should not exceed this frequency. Similarly, when viewing expo-
sures, if the risk management process predicts that a 1 per cent move
in interest rates will result in a $1 million loss then, if this move does
occur, the predicted loss should also occur. At the organizational level,
back testing validates actual P&L against calculated (expected loss) risk
levels, to ensure that the reported risk is statistically valid. Regulators
use this information to ensure the correctness of the risk management
process and impose additional constraints and reserves on organiza-
tions that repeatedly underestimate their risks.

It is important to note that different event data and risk measures may
be utilized at each level. Traders may wish to risk manage their books
based on modified (and hopefully more conservative) data or utilize
market data that reflects the trading style adopted. For example, if a fixed
income trader is trading government bonds and hedging the risk expo-
sure using bond futures, then risk is likely to be shown in terms of future
equivalent positions and hedge ratios. While this is a valid (and required)
strategy within a business line, it is difficult to aggregate or compare the
risks taken by different desks when different risk calculations are being
used. As a result, the higher up the organizational risk hierarchy we
move, the more important it is to:

1. Utilize holistic models that enable the comparison of the risks arising
from different styles of trading in different asset classes

2. Use comparable models and data so that risk exposures that should
offset each other, do indeed do so.

Even where the same type of instrument is traded in two different
business areas (for example interest rate swaps are used for hedging
in both the foreign exchange (FX) derivatives and interest rate deriva-
tives areas), unless the swaps are priced and risk parameters calcu-
lated using the same underlying market data and models, then two
identical and opposite positions may not show the same levels of risk.
This can become a major issue where it is possible to net/offset risk
exposures between business lines, since the two calculated levels of
risk will differ.

21

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

DRIVERS FOR CHANGE

Systems and processes evolve because they have to. This may either be
driven by unique internal drivers such as organizational change and new
business models, or be enforced by external drivers such as regulatory
requirements, market conditions, competition or client needs. Financial
institutions have had to deal with market consolidation and falling
trading margins for some time. However, recent research as part of the
Finexpo 2003 conference in London12 highlighted a number of additional
key issues that are currently impacting the investment banking
community. They include:

Cost reduction
Financial institutions are cautious given the current market conditions
and are trying to improve profitability by reducing costs. This is likely to
lead to an emphasis on leveraging existing technology within the organ-
ization and focusing on projects that improve the efficiency of current
processes. These projects will need to also have a rapid impact on profit-
ability or cost saving.

Constrained budgets and reducing IT staff numbers
Budgets are expected to be slightly down on previous years, together
with staffing levels. This is placing even further strain on IT resources.

Increased outsourcing
Although tactical outsourcing is expected to increase, organizations appear
uncertain about the benefits of outsourcing entire processes or departments.

Regulatory compliance
External regulatory changes, such as Basel 2, are driving risk manage-
ment changes (especially in credit and operational risk). There are also
internal demands for better business intelligence and tighter controls.

Straight through processing (STP)
Improved and more efficient internal processes that require minimal
manual intervention. This is being driven by regulatory pressure and the
desire for potential cost savings.

In addition, market volatility has increased in many markets with
liquidity reducing in others. This has tended to make financial institu-
tions much more risk averse. Despite some of the cautious opinions in

RISK MANAGEMENT SYSTEMS

22

the survey, there was a general optimism that IT can assist organizations
to mitigate the worst effects of the current market conditions. This
research is painting a picture where the risk IT manager is faced with:

■ Changes in the regulatory environment, driving new risk manage-
ment requirements

■ A need for improved and timely information to more effectively
manage risks

■ A drive for increased operational efficiency

■ Having to support rapidly evolving business models in an increas-
ingly competitive and volatile marketplace

■ Wanting to reuse existing internal resources but having to provide
scalable risk management solutions that address current as well as
future needs.

The regulatory environment and Basel 2

Whereas financial institutions focus on maximizing returns for the level
of risk taken, and mitigating those risks that are viewed as unacceptable,
the regulatory environment is concerned with:

■ Ensuring the integrity of the markets and that customers are protected
from inappropriate practices

■ Mitigating systemic risk.

Systemic risk is the risk that some market event will result in a series of
correlated shocks throughout the financial system that will negatively
impact the wider economy. Typically this is thought of in terms of a
significant loss in one institution impacting its ability to meet liabilities to
other market participants, and so on, until the entire financial system is
under threat.

There have been recent examples of both these types of risks and
events in the markets recently. The current US litigation concerning the
role of analysts and the financial institution’s relationships with the
companies covered in the analysts’ reports has resulted in widespread
changes to the role of research within investment banks, in order to
ensure that research is unbiased by other activities (and that as a result

23

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

clients are not misled).13 The Sarbanes-Oxley Act (www.sarbanes-
oxley.com) has been passed in the US to increase the requirement for
board-level members to understand and ensure the accuracy of the
figures reported in company accounts. This should reduce the likeli-
hood, and impact on financial institutions, of the uncovering of finan-
cial irregularities such as those at Enron and WorldCom.

All these regulatory changes impact the environment that financial
institutions operate in, both highlighting as well as trying to reduce risks
within the financial system. They may also increase the operational risk
for financial organizations, by resulting in fines for regulatory failings, or
reputational damage.

Outside the US, the Bank of International Settlements (Basel
Committee on Banking Supervision or BIS) has been producing a
number of directives to improve the collaboration between banking
regulators in different countries, and to assist them in the setting of
similar regulations with respect to banks’ international operations.
Although the Basel Committee directives were originally produced for
the G-7 countries, they have since been adopted in over 100 countries.
The BIS does not have statutory or regulatory responsibilities, so the
precise details and the timing of the implementation of any accord are
left to local regulatory authorities in each country. As a result, the precise
regulatory risk requirements are likely to vary depending on the regula-
tory authority.

The initial Basel Capital Accord (1988), for credit risk, achieved inter-
national convergence in the measurement of bank capital adequacy and
established a minimum regulatory capital requirement for credit risk.
Regulatory capital is available as a cushion against large, low probability
loss events and, as a result, has a different role to that of economic capital
(which is aimed at measuring risk in terms of economic realities, rather
than regulatory accounting rules). Eligible capital comprises:

1. Issued shareholder equity and retained earnings (defined as Tier 1
Capital)

2. General provisions and issued subordinated debt as defined in the
Accord (Tier 2 Capital)

3. Some short-term issued subordinate debt (Tier 3 Capital).

The aim is to ensure that assets that have higher levels of risk associated
with them require higher levels of capital to be maintained. The
minimum regulatory capital requirement is then given as a percentage

RISK MANAGEMENT SYSTEMS

24

of the risk-weighted assets, which can be compared against the actual
regulatory capital of the organization.

The initial Basel Accord is, however, less relevant than it was due to
changes in the markets and the business models of banks (partially
arising from implementation of the Accord). This has seen banks take on
more market risks that are not adequately provisioned for in the initial
Accord, although this deficiency was addressed in an amendment to the
Accord in 1996. This amendment did not, however, address the differen-
tiation between different types of credit risk and the benefits of credit
diversification, so that banks that reduced their credit exposure through
this approach were not adequately compensated by a reduced capital
requirement.

The new Basel Accord (known as Basel 2) is aimed at addressing a
number of deficiencies of the initial accord, requiring a more complex
treatment of credit risk (through the introduction of new methodologies
and internal models) and the inclusion of operational risk. The capital
requirement for operational risk is likely to be a powerful driver for
organizations to focus on reducing it.

The implementation of the impending Basel 2 Accord is currently
a top priority within all global financial institutions and is again aimed at
mitigating systemic risk within the global financial markets. As well as
providing a more complete measurement of risk, Basel 2 focuses on
a three-pillar approach to ensure safer banking practices:

■ Pillar 1: minimum capital requirements based on the existing
approach for market risk and new approaches for credit and opera-
tional risk

■ Pillar 2: supervisory review of institutions’ capital adequacy and
frameworks for internal assessment and audit processes

■ Pillar 3: market discipline through a transparent disclosure process of
capital adequacy and risk control processes.

The approaches to measuring risk in the three different risk categories
are shown in Table 1.1. The Accord will encourage the use of increas-
ingly complex approaches through the likelihood of a reduced capital
requirement.

The Accord has prompted many financial institutions to re-evaluate
their existing systems to ensure that regulatory compliance and risk are
effectively managed. Risk management technologies built to comply with
the first Basel Accord for credit risk were typically based on the use of

25

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

a data warehouse and monolithic applications. As the regulatory environ-
ment evolves to be much more complex and demanding, these systems
are unlikely to be able to address the needs of financial institutions.

THE MOVE TO REAL TIME AND ON-DEMAND RISK
INFORMATION

When the risk profile of the organization is constantly changing,
knowing the current market and credit risk a trader is responsible for, in
real time, has always been essential. Trading financial instruments
without knowing the risks being taken leaves the trader exposed to risk
events in an unknown and therefore unpredictable manner. The focus at
the trading desks has therefore always been to provide an integrated,
high performance environment where traders are aware of the risks they
are exposed to at all times. If the risks taken are excessive, this

RISK MANAGEMENT SYSTEMS

26

Table 1.1 Approaches to risk measurement in the new Basel Accord

Risk Class

Market Minor changes to existing methodology

Standardized Internal ratings-based methods (IRB)
Credit Additions to Basel Foundation Advanced

88 approach approach approach
Breakdown by As for
exposure category Foundation
with parameters but all
determined by both parameters
institution and input calculated by
from regulator institution

Operational Basic indicator Standardized Advanced
approach approach measurement
Use of a single risk Different business approach
indicator or units are assigned Internally
aggregate activity different risk calculated,
measure multiplied indicators or based on a
by a fixed multiple aggregate activity more complex
or alpha measures which analysis of the

are multiplied by a current risk
fixed multiple or taken within
beta determined by organization
the regulator

Increasing complexity in approach

information enables the trader to reduce or remove those risks or modify
the risk profile to one that is more acceptable. Risk control monitoring at
the desk level has been essential for managing this process.

The flow of information further up the organization, across trading
areas and business lines, has however been a more delayed process. This
has tended to make the organization-wide risk management process more
a reactive than a proactive one. Regulatory risk calculations are only
performed at the end of each trading day and senior managers often do
not need to monitor intra-day risk unless other lower level control
processes have failed or risks have significantly changed (in either magni-
tude or likelihood). It is this need to review total risks within an organ-
ization when certain major risk events occur, or the sources of risk within
an organization significantly change, that alters this requirement. As a
result, there is a growing need to be able to view on demand the current
risk taken within an organization. This move to on-demand intra-day risk
information gathering raises a number of data issues which will be
addressed throughout this book. Currently, many organizations spend a
large amount of their time ‘cleaning’ and correcting information received
from various systems, in order to obtain a true and correct snapshot of the
organization as of some moment in time. Often, the effort required in this
process demands that this moment in time is some point further in the
past than many risk managers would like.

By improving the risk management processes and technology it is
possible to move closer to near real time risk monitoring throughout the
risk hierarchy. This can have many benefits for business processes
throughout the organization. If intra-day risks are constantly monitored
throughout the trading day, there will be fewer surprises in the end-of-
day risk analysis and calculations. Unexpected changes in the risk profile
can also be investigated to ensure that they are not due to failures or
incorrect data in the source systems. It is also possible to rectify these
problems while financial markets are still active and able to be used to
reduce any market risk. Otherwise, this will have to wait until the end of
the trading day when reports will have been produced and some of those
financial markets are closed. This process can also provide additional
competitive advantage, ensuring that regulatory risk and economic
capital are used as efficiently as possible. This enables the organization to
trade up to its global regulatory risk limits or reapportion capital
between different business units intra-day, rather than having to main-
tain a margin for error based on the use of out of date information. This
changing use of risk management information throughout the organ-
ization will drive organizational risk management from being seen as

27

WHAT IS R ISK
MANAGEMENT?

ch
ap

te
r

o
n

e

a costly reactive process to one which can add value. But for all this to
occur the need to efficiently obtain high quality data from across the
organization in a timely manner must be addressed.

The changing business models within financial institutions with more
cross asset class risk being traded within each business unit is also
resulting in problems for localized limit monitoring; similar risks are
taken in different business units which produce an aggregate exposure
that cannot be determined by looking at any area in isolation. With the
increasing overlap of specific types of risk across different business lines,
there is also a need to ensure that the aggregate exposure within the
organization is controlled. Currently many limit monitoring processes
(counterparty exposure is a common exception) are only performed at the
business line level or at the end of trading as part of an end-of-day risk
management process. This has meant that the available risk limits within
the organization cannot easily be dynamically shared across business
lines if one area wishes to use the unused risk limits of another business
area. With global real time risk management, all this becomes possible.

Notes

1 R. Lowenstein, When Genius Failed (Fourth Estate, 2001)
2 ‘The amazing disintegrating firm’, The Economist (6 December 2001)
3 F. Cowell, Practical Quantitative Investment Management with Derivatives (Palgrave,

2002)
4 S. Beckers, ‘A survey of risk measurement theory and practice’, in The Handbook

of Risk Management and Analysis, C. Alexander (ed.) (John Wiley and Sons, 1996)
p. 173

5 T. C. Wilson, ‘Calculating risk capital’, in The Handbook of Risk Management and
Analysis, C. Alexander (ed.) (John Wiley and Sons, 1996) p. 195

6 R. S. Kaplan and D. P. Norton ‘The balanced scorecard – measures that drive
performance’, Harvard Business Review (Jan–Feb 1992) 71–9

7 J. Merriman and A. Tudor, ‘Bank of America to cut up to 100 jobs in London’,
Yahoo! Finance UK (Wednesday March 19 2003, 03:10 pm)

8 A. K. Bhattacharya and F. J. Fabozzi (eds), Asset-backed Securities (FJF, 1996)
9 D. J. Isenberg ‘How senior managers think’, Harvard Business Review (Nov–Dec

1984) 81–90
10 R. Hogg and A. Craig, Introduction to Mathematical Statistics (Prentice Hall, 1995)
11 J. C. Hull Options, Futures, and other Derivatives (Prentice Hall, 1997)
12 Finextra.com, Financial Technology Strategies 2003 (Finextra Research, January

2003)
13 J. Geralds, ‘Wall Street analysts probe widens’, IT Week (11 April 2002)

RISK MANAGEMENT SYSTEMS

28

29

CHAPTER 2

The risk management
challenge

The risk management challenge addresses the requirement to model and
measure the risk inherent in the business model of the organization in a
manner that accurately reflects the risks taken. Once measured, these
risks can be effectively managed, controlled and mitigated. Risk manage-
ment at the individual process or product level can be reasonably easy to
manage for simple financial products. The complexity arises when we
need to obtain and combine risk information for different types of risks
in a wide range of instruments or operational processes in order to
discover the overall risk profile for the organization or business unit. This
is complicated by a legacy of risk management systems within which
information resides. Risks are also not always additive and the consis-
tency, quality and availability of data may pose significant problems to
the risk developer, who will be subjected to numerous internal and
external constraints (see Part II).

MODELLING RISK

Modelling the real world

Risk models provide a simplified representation of the ‘real world’ in
which events can be analysed. These models act as a proxy for real
world processes and possible events. The outputs are interpreted to

provide an indication of actual risk arising from various sources within
the organization (Figure 2.1). The bases of these models are typically
statistical or probabilistic approaches. They will include assumptions
concerning how events impact possible losses, as well as the probability
distributions and correlations between those distributions. Many statis-
tical assumptions are based on the independence of some events, and
the processes having ‘standard’ distributions (for example, being
normally or lognormally distributed).1 Risk modelling within the finan-
cial organization is performed in one of two ways:

■ Top down
These models combine risk information at the business or enterprise
level, without analysing the individual sources of risk, in order to
obtain an implied estimate of risk within the organization. Top-down
approaches are inherently simpler to implement than bottom-up
processes, but cannot readily capture the benefits or the effects of risk
mitigation within the organization. They have the advantage of
taking a more holistic approach to operational risk, highlighting

RISK MANAGEMENT SYSTEMS

30

Figure 2.1 Modelling risk and relating it to the real world

Real World Mathematical Model

Model
Real world events

Data collection,

interpretation &

cleaning

Model

output
Risk expectations

and predictions

Interpretation of

results

and
Real
world
events

Risk
expectations

and predictions

issues across business units, and have less onerous data requirements.
They are however usually more qualitative in their approach.

■ Bottom up
These approaches model the actual sources of risk, together with the
events that result in losses within the organization. They are more
complex but enable the impact of risk mitigation and other changes in
the sources of risk, or probability of various risk events, to be
modelled. They have the advantage of providing detailed low-level
analysis of the actual sources and events that result in losses. The
complexity of these approaches does however mean that they need to
be performed by staff who understand the detail of the sources of risk
being modelled. This low-level granular approach can however result
in information overload and can be time consuming to perform.
Focusing only on low-level detail can also miss some of the more
important business unit interrelationships and correlations that can
result in significant losses.

For pricing risk, a bottom-up approach is typically utilized with the
approaches to modelling individual risk positions combined into an
aggregate risk exposure (Figure 2.2).

In a bottom-up approach the risk models can be broken down into two
types:

■ Those used to determine the risk in individual sources of risk, such as
those arising from individual positions or from a specific internal process

■ Those used to combine individual risk exposures into the total exposure
for the individual trader, business unit, region, organization and so on.

The complexity usually arises when trying to combine the various risks
into an aggregate risk profile. From a quantitative perspective, this essen-
tially involves determining how individual exposures or probability
distributions of returns combine into an overall aggregate risk profile
or multivariate distribution. Determining this distribution will require
an understanding of the correlation or possible interaction of events. If
any but the simplest distributions are involved, complex dependency
structures will be required in order to understand how these marginal
distributions combine into a total risk profile.

In order to combine the risks in each individual position into an aggre-
gate profile, the risk metrics must be comparable or easily transformable
to a common measure. Ideally a common framework should be used

31

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

throughout all the risk models, so that assumptions within one model are
compatible with those in other models. Significantly inconsistent
assumptions may lead to misleading results. One reason why exposure
and scenario based approaches are viewed as complementary to more
statistical methods is that they permit the analysis of certain extreme
types of events that may be more likely than predicted from simple
(assumed) statistical distributions.

Uncertainty in modelling risk

Any risk model from which we can calculate the risk associated with
a financial instrument or operational process should be complete enough
to ensure that all key risks to the organization are accurately reflected.
Operational risk and uncertainty enters the risk management process due
to deficiencies and failings in the processes and the models used. Models
take various inputs (which may either be based on observable data or be

RISK MANAGEMENT SYSTEMS

32

Figure 2.2 Risk model aggregation

Individual pricing and risk models

Different risk metrics

and risk models

Transformation

Aggregation model

Risk aggregation

Different risk metrics
and risk models

Individual pricing and risk models

subjectively determined), process these and produce a measure of risk
(Figure 2.3). The models used within financial institutions can be catego-
rized as:

Direct models
Prices and risks are directly derivable from observable data. For example,
the price of an equity share and the impact of changes in that price are
directly observable and can be obtained from equity exchanges.

Industry standard models
These are models which are generally accepted and commonly used
within the industry. There is less implementation risk associated with
using these models as they can be tested against commonly available and
comparable models.

Proprietary models
These are models which are unique to the organization. As a result they
are difficult to test and validate against other third party implementa-
tions and tend to be compared against (Monte Carlo) simulation
methods (see Chapter 3) or independent reimplementations, possibly
using mathematical analysis tools.

There are a number of points in this process where inaccuracies or
errors may result in incorrect or inaccurate risk information:

33

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Figure 2.3 Input and model uncertainty

INPUTS OUTPUTSMODELS

Observable

Subjective/Unobservable

Direct

Industry

Standard

Proprietary

Risk

1. Uncertain input data, especially subjective parameters

2. Poor quality, inaccurate or incorrect input data

3. Mis-specification, incorrect assumptions or imprecise model

4. Incorrect model implementation

5. A combination of all of the above.

These deficiencies will introduce additional risk into the process,
which should be quantified. This will often result in additional capital
reserves being calculated to augment any other capital calculations
performed as part of the risk process. The effort expended in developing
models or improving data quality to enhance the quality of risk infor-
mation should take into account the points listed above; there is little
point in developing the ‘perfect’ model if it is not possible to obtain accu-
rate input data to utilize it, just as there is no point in expending time on
determining the input parameters to a high level of accuracy if the model
is too simplistic to utilize this information, or the output of the model is
not sensitive to that parameter.

It is this uncertainty in the input parameters that may result in traders
needing to set their own model parameters in addition to using standard
organizational values. Uncertainties or inaccuracies in the models used
may also mean that traders may wish to use a different or more complex
model in order to manage their risks. Uncertainty in the input parameters
can be analysed by looking at the change in the model output as the input
parameters vary, providing some indication of the possible error in the
model outputs. Similarly, the impact of different modelling assumptions or
numerical implementations of a model can be investigated by comparing
the values generated by different models or model implementations. Even
when the price of a financial instrument is directly observable in the
marketplace, there are often varying levels of price transparency. A trans-
parent market is one where it is possible to simply obtain a true and fair
representation of the ‘best price’ available for that instrument in the
market. This will depend on a number of factors such as:

■ Liquidity: Instruments which trade infrequently will not have an up to
date, current tradable price.

■ Fragmentation of market: Instruments that trade in a single location will
have a single point at which the best available price can be obtained;
the exchange an equity is listed on will always provide the best price

RISK MANAGEMENT SYSTEMS

34

in the market, whereas fixed income securities do not trade in any
single location but are bought and sold in one-on-one sales or on elec-
tronic markets.

■ Size of position: The prices obtained in the market for some financial
instruments may not be achievable if the size of the position is excep-
tionally large.

Historical and predictive model inputs

Input parameters to models, when based on observable data, are either
derived from historically observed behaviour or from observing current
events or processes. For example, the probability of a credit default
occurring can be based on observed frequencies of default for similar
companies or derived from current observed credit default swap
spreads.2

When historical data is used, the inherent assumption is that past
behaviour is likely to repeat itself in the future. As a result, historical
information can act as a source of information for backtesting and vali-
dating models, but it can be an ineffectual signpost for what will occur in
the future. This is especially true if internal business process change
when modelling operational risk or if financial markets undergo a step
change in behaviour when modelling credit or market risk.

Even if there is not a major step change in the external markets,
utilizing historical data as inputs into a risk model can introduce a time-
lag effect. As external events occur, these are retrospectively included in
any risk calculation. This means that when market conditions result in
potentially higher levels of risk, these will only increase any calculated
level of risk after the event, when that data is included in any risk calcu-
lation. If historical data is only periodically updated for use in risk
analysis, this can result in sudden jumps in the level of calculated risk
based on this reassessment of external events.

Model calibration

Many models need to be calibrated to the market. This is especially true
(and also very problematic) with operational risk models and can be
computationally complex as well as time consuming. The aim of calibra-
tion is to derive the unobservable model input parameters given the

35

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

observed model outputs (possibly only for certain well-defined cases or
financial instruments). This requires the unique determination of the
input parameter(s) given the model output, or for assumptions to be
made about the possible range of values the input parameter(s) may take.
Examples of this process can be seen where implied volatilities are
deduced from observed option values by matching option prices.3 These
implied volatilities are then used to price other less liquid instruments.
Similarly, model multiples in operational and portfolio market risk may
be deduced by comparing expected and observed risk levels and cali-
brating between the two.

DATA REQUIREMENTS FOR RISK MANAGEMENT

One of the major challenges in risk management is obtaining the requi-
site data that, as well as quantifying the sources and events which result
in risk within the organization, also identifies the returns and losses
arising from those risks (Figure 2.4).

The information concerning the sources of risk within the organization
will be spread across the entire organization. It will consist of financial
transactions as well as operational related information concerning

RISK MANAGEMENT SYSTEMS

36

Figure 2.4 Data requirements for risk management

Data

Sources of Risk

Operational and

transactional

information

Origination of

Risk

Drivers and

Risk Events

Internal and external

event information

(current and historical)

Outcomes

actual losses

(realized and unrealized)

and 'near-misses'

Risk

Calculation of Calibration and

Verification of Risk

processes, people and technology. In order to calculate the risk arising
from these sources of risk, data concerning external and internal events
(both current and historical) is required as input into the risk models.
Finally, data regarding the actual losses or returns attributable to
different sources of risk must be obtained in order to validate, calibrate
and test the implemented risk measures.

THE RISK MANAGEMENT HIERARCHY

Risk management on the trading desk and business unit

Silo and monolithic trading systems

At the bottom of the risk management hierarchy, on the individual
trading desks, there have historically been two extremes of approach
to developing trading and market/credit risk management systems
(Figure 2.5):

1. The first was to implement a monolithic all-encompassing global
trading system that provided a single approach and storage location
for all transactions across the bank, its locations and desks.

2. The other was the more commonly seen ‘stove pipe’ or silo approach,
where each business area (and possibly location) developed a tailored
solution to address that area’s individual needs.

The approach taken will have been driven by:

The manner in which budgets and costs were allocated
Where budgets and management structure were more devolved,
a legacy of silo applications will have been created, so that systems
development is aligned with the profit centre (business unit) respon-
sible for funding it. Centralized budgets or management control tends
to encourage resource sharing and the development of centralized
systems.

The ability of a single system to address all the requirements for trading the
desired range of financial instruments
If traders are responsible for a wide range of different financial
instruments then all-encompassing cross asset class systems tend to be
developed.

37

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

The dominant technology paradigm and costs associated with supporting such
approaches at the time the solution was developed
Where a centralized mainframe processing paradigm has dominated, there
is a tendency to develop centralized applications that can easily be shared
across business lines. More distributed development and processing para-
digms tend to have resulted in the development of silo applications.

Each approach has its own unique advantages and disadvantages as
detailed in Table 2.1.

The performance implications of trying to use a single code base to
support the global requirements of all traders in a monolithic solution
can result in extremely complex and poor performance solutions.
While they may address many of the generic requirements in the
markets traded, they are complicated by the addition of location and

RISK MANAGEMENT SYSTEMS

38

Figure 2.5 Two extreme approaches to system development

Silo

System

Business Line 1 Business Line 2 Business Line n

Silo

System

Silo

System

Users Users Users

Users Users Users

Cross asset class system

Business Line 1 Business Line 2 Business Line n

user-specific functionality which, although available to all, may only
be used by a small subset of the user base. For example, a trading
system developed for US traders may have to handle higher trading
volumes, but only needs to consider instruments that trade in the US
and settle in a single location in US dollars. By contrast, a solution
developed for Europe or Asia will need to handle the multiple
currencies, settlement locations and other non-standard demands of

39

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Table 2.1 Advantages and disadvantages of silo and centralized
system solutions

Centralized systems

Advantages Disadvantages

■ Single location/system for all ■ Unresponsive to individual trader
transactional information needs

■ Standard functionality used ■ Broad range of requirements which
by all traders are difficult to project manage

■ High levels of code and ■ Significant global co-ordination (both
functionality reuse technically and managerially)

■ Reduced costs and easier to maintain ■ Difficult to address individual trader or
local regional requirements

■ Difficult to efficiently support a diverse
set of requirements and business
models

■ Often a lack of a single business
sponsor

Silo systems

Advantages Disadvantages

■ ‘Best of breed’ approach ■ Expensive due to the rebuilding of
common functionality

■ Efficiently implement unique trader or ■ Costly to maintain multiple solutions
location specific requirements

■ Few contradictory requirements ■ Little functionality or code reuse

■ Single business sponsor ■ Non-standard approaches

■ Funded by business unit which will ■ Multiple technologies and
benefit from the system development platforms

■ More limited requirements which are ■ Greater integration requirements
easier to project manage within the organization

a multitude of international markets and clients. Developing a solution
that can handle the complexities of the European or Asian markets
will, however, add additional functionality, which may have nega-
tive performance implications if the solution is also to be deployed in
the US.

The many, often contradictory, requirements and frequent lack of a
clear business sponsor for a centralized approach and system often doom
such approaches to failure before they even begin. It is therefore not
surprising that most financial institutions have taken an approach that is
somewhere between the extremes mentioned. The precise manner in
which boundaries between systems and trading areas have been defined
has often been driven by internal organizational and structural issues. As
a result, market and credit risk information has been distributed across
a number of different front office systems.

The distribution of risk information across many systems does not in
itself result in an intractable data management problem. However, taking
the silo approach to its illogical conclusion of ultimate trader flexibility at
the expense of all other controls and management issues resulted in the
‘spreadsheet madness’ witnessed in many investment banks during the
1990s. This situation resulted from traders developing and using indivi-
dually tailored spreadsheets to rapidly structure, trade and risk manage
deals (see Chapter 10).

Although flexible, these unscalable ‘stove pipe’ solutions resulted in
little reuse of software or methodology in other areas of the bank, non-
standard valuation and risk management approaches, and can prove
impossible to control and maintain. The difficulty in integrating these
spreadsheets into other internal systems also resulted in processes that
were manually intensive, non-scalable and prone to frequent process
failure.

Approaches to silo trading system development

One of the key problems for a single monolithic system supporting all
instrument types and trading models is that there are typically two types
of financial instruments traded:

■ High-volume, commodity type ‘flow’ instruments (for example equi-
ties, bonds, FX and so on)

■ Lower volume, highly customized and structured instruments (often
known as over-the-counter or OTC derivative transactions).

RISK MANAGEMENT SYSTEMS

40

Innovative new financial instruments typically fall into the second
category. They have higher margins and costs associated with them
(due to the overhead in trading and managing such unique transac-
tions). However, over time successful structures and customized
instruments do become more standardized and clearly parameterized
using standard financial language and documentation. As part of this
standardization process, volumes will increase and move into the first
category. This has often required a rewrite of the associated systems in
order to handle the change in business model. An example of this can
be seen in the credit derivative markets. Initially each transaction was
uniquely defined and required complex legal documentation. As
volumes increased, along with a desire to reduce costs, the definition
of the contract and the terms within the contract became standardized.
This led to the ISDA credit definitions,4 which are now commonly used
in most credit derivatives transactions.

The different volume and customization characteristics of these two
groups of financial instruments result in two different extremes of
systems being developed to support trading in them. For higher volume
products, trades must be rapidly captured or entered into this system
and managed by the trader. This leads to a requirement for highly auto-
mated trade capture and management systems (and the ability to enter
partially completed trades with the main risk management characteris-
tics completed) with visualization, filtering, sorting and reporting tools
that enable the trader to manage high volumes of data.

At the other extreme, customized low-volume transactions require an
environment where everything in the transaction can be modified to the
precise requirements of the client. Often the risk in these transactions is
significantly more complex and so a trader will require tailored visual-
ization and reporting of a range of risk measures. A system that displays
this level of flexibility, can be extremely difficult (and expensive) to
develop and so tends to lend itself to ad hoc tools that permit the trader
to develop and implement this functionality as and when required. For
the risk system developer, these two types of system have significantly
different challenges associated with them. Trying to reconcile both these
contradictory requirements in a single system is exceptionally difficult;
the data model would need to efficiently handle the high-volume stan-
dardized transactions while also being extensible and flexible enough for
current and future structured transactions. The user interface would also
need to be able to permit the rapid entry of data for standardized instru-
ments while being able to support the customization of many of the
features of the instruments.

41

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Cross asset class trading and structuring

The development of silo applications has also led to further problems
as the evolution of the financial markets has resulted in increasingly
complex business models and financial structures. Different business
units now often hedge using instruments normally associated with
other business units and handled in other silo trading systems. Recent
examples have seen a move towards combining government bond
trading, corporate bond trading and ‘flow’ credit derivative trading
together with the use of interest rate swaps as liquid hedging instru-
ments into a single trading platform. This enables each desk using
such a system to easily utilize the functionality and instruments
usually associated with other trading areas. For example, the interest
rate risk that is inherent in government bonds is also present in
corporate bonds and can be hedged using interest rate swaps and bond
futures. The credit risk inherent in corporate bonds is also the under-
lying risk in the credit derivative market and can be hedged using
asset swaps or equity type transactions, due to the interrelationship
between credit quality and the underlying value of the company. The
traders within each business area, however, often have differing
requirements and approaches to viewing these instruments. What is
required are systems that possess all the advantages of both silo and
monolithic system approaches, without any of the disadvantages.

This increasing interaction of what historically have been seen as
separate financial markets, as well as the desire to differentiate the
organization by being able to customize transactions using the most
appropriate combination of different types of instrument, has begun to
break the silo-based approach to trading system development. There is
now an increasing realization, even at the trading desk level, that it
must be possible to aggregate risk and reuse functionality that has
been typically associated with different systems. This has led to the
extraction of information from individual silo systems and the
combining of the aggregated risk into a single real time risk manage-
ment view on the trading desk (Figure 2.6). Frequently this process has
been performed in an ad hoc manner within and across different busi-
ness units, resulting in a bottom-up approach to building trading and
risk systems.

In addition, there has also been a need to be able to link together
transactions in different systems, in order to associate them with a
single financial structure. Such approaches have resulted in new user

RISK MANAGEMENT SYSTEMS

42

interfaces that provide a common method of accessing a number of silo
trading systems behind this interface. Traders may perform macro-
level hedges at the aggregate portfolio level or associate the hedge
trade directly with a structure of an individual position (that is, a
micro-level hedge). The requirement to view the risk broken down in
such a manner is placing increasing demands and dependencies on the
individual trading systems within organizations. For risk aggregation
within the business unit level, a single system is typically responsible
for each instrument type. The issue of aggregating information is then
one of forwarding financial transactions onto the appropriate system,
calculating risk in each of these systems and combining the risk into a
consolidated view of the business unit. However, when different
(possibly inconsistent) approaches to calculating risk are used by
different systems, the process can exhibit some of the complexities
associated with business level aggregation.

43

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Figure 2.6 Risk aggregation at the desk level

Aggregated

Risk View

Silo Trading

System 1

Silo Trading

System 2

Silo Trading

System 3

Business level aggregation

The correlated nature of many of the risks taken in different business
units means that individual risk exposures are likely to combine into
a significant aggregate risk profile for the organization. For example, in
crises such as the bankruptcy of Enron, many financial institutions held
a large amount of Enron corporate bonds but also had sold credit
protection on Enron, had outstanding loans, OTC derivatives with
Enron as the counterparty and even held a significant amount of Enron
shares. Each of these instruments may have been traded in different
business units, which can result in a significant aggregate credit expo-
sure to a single company, even if each of the individual exposures is not
significant.

As a result, any initial assessment of exposure that looks at a single
system or geographical location can be very misleading. When infor-
mation is aggregated across multiple systems, whether to support
trading activity or for business level risk management, there is a need for
consistency in certain pricing and risk management approaches.
Although, at the trader level, different risk metrics, models or input para-
meters may be used to aid the trader in their decision making, this
becomes more problematic as information from different traders and
business units is aggregated (see Table 2.2).

Table 2.2 highlights the need to ensure some level of consistency in
pricing and risk management between each trading system. The use of
different models or risk metrics and input parameters within the organ-
ization leads to two issues:

1. Reconciling the risk information produced at different levels of the
organization; the inability to reconcile risk information used to calcu-
late economic capital or enforce risk limits with that as understood by
the individual trader is likely to result in significant issues within the
organization.

2. Inaccuracies and netting problems when combining information
calculated using inconsistent models and data into an aggregated
view of risk within the organization.

As a result, most financial institutions tend to standardize the model-
ling approaches used. They may permit different pricing models only
where differences or inaccuracies are well understood, or do not
impact the risk metrics calculated higher in the risk hierarchy. The

RISK MANAGEMENT SYSTEMS

44

use of different input parameters can be managed and is often
permitted within many organizations as a key trader requirement. It
is however, relatively easy for the trader to investigate and understand
any discrepancies resulting from differences in these parameters.
The end-of-day or end-of-month reconciliation of these figures is
usually handled as part of the control function to ensure that any
reported P&L or risk information is a true and fair reflection of the
actual portfolio.

45

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Table 2.2 Complexity of the reconciliation issue between different
levels of the risk hierarchy

Input parameters

Same Different

Same No reconciliation or Differences can be
aggregation issues rationalized in terms

of sensitivities to
input parameters.
Comparable prices
and risk information
can be obtained by
choosing a
consistent set of

Pricing and
input parameters.

risk model
Different Complex if more than Highly complex –

a simple transformation both the differences
is required to convert in the two models
results from one model and the sensitivities
to another. This will of each to input
require an understanding parameters
of the different need to be
assumptions inherent understood.
in each model and their Aggregation
impact on the risk can be achieved
metrics. Comparable by selecting one
prices and risk information of the models in
are most easily obtained preference to the
by recalculating price other and using a
and risk information common set
using a common set of of input data.
models.

Integrate the enterprise

The reality of integrating risk management technologies across the
enterprise, inclusive of all asset classes and geographic locations is a
complex task. Not only are systems likely to be physically located in
different places but they are also likely to have been developed over
different time periods using different technologies, often using the
current ‘in vogue’ technology of the time. The result of this distributed
development and deployment environment is that there are major
challenges in obtaining and consolidating data represented with
different data model semantics and syntax, and stored using different
technologies.

This ‘fruit machine’ challenge is one of the major problems in risk
management design; whereas one system may be sending a cherry,
another an apple, and a third a gold bar, the risk system architect wants
to be able to see just a line of all cherries, apples or gold bars, rather than
a losing mix.

From a risk modelling perspective, risk aggregation provides further
problems. Due to the correlation between risks arising in different parts
of the organization and the non-linear nature of some risk metrics, risk
aggregation is often not a simple summation process across the organ-
ization. Additional information is required in order for these risks to be
combined in a coherent manner.

However, once all an organization’s risk exposures can be viewed in a
single location or application, regulatory reporting becomes a far simpler
task. Senior management is also able to make much more informed
decisions. The greater the volume of information available on an organ-
ization’s funding costs, existing risk profile and capital requirement, the
easier it becomes to enter into transactions which reduce risk and accu-
rately reflect the costs involved.

TRANSACTIONAL AND WAREHOUSING SYSTEMS

Front office systems are transactional systems designed to support an
organization’s day to day operational activities. They will only main-
tain data that is directly relevant to this task, which is likely to be
incomplete for all risk management needs, even if a single centralized
system is developed. If other data that is relevant to the risk manage-
ment process is forced into these systems, there is likely to be a detri-
mental performance impact. Their transactional nature means that they

RISK MANAGEMENT SYSTEMS

46

are optimized for inserting and updating current information, in order
to provide an up to date, current view of transactional activity and risk.
They hinder efficient access to and complex processing of snapshots of
data at different points in the past. Carrying out such unoptimized data
retrieval in order to perform contemporaneous analyses across multiple
systems is likely to have a significant impact on trading system perfor-
mance and response times. Because of these limitations data ware-
houses are often used to record complete and consistent snapshots of
historical information for general retrieval and analysis, away from the
transactional environment. A comparison of the contradictory require-
ments between transactional and data warehouse systems can be seen
in Table 2.3.

So although rapid risk calculations on current positional data are
unlikely to be problematic using transactional systems, the complex
calculation and analysis of risk information using significant amounts
of historical information will be. This is problematic for online analyt-
ical processing (OLAP) tools that ‘slice and dice’ information in a
number of dimensions and enable analysts to gain insight into the data
through fast, consistent, interactive access of a wide variety of possible
views of information. Data mining tools may also be used to answer
more abstract queries and provide the non-trivial extraction of
implicit, previously unknown information from data.

As a result, there is a tendency to replicate data into other systems or
data warehouses, where it is held in a common data representation and
format, to be efficiently accessible away from the trading environment.
The duplication of information can however result in further problems:

47

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

Table 2.3 Comparison of data requirements for transactional and
data warehouse systems

Data warehouse system Transactional system

Aim Information retrieval and Support operational
analysis activities

Data Data required to manage Data required to run the
and analyse the business business

Type of data Historical and descriptive Incomplete, current view
of business operations

Data Model Single consistent data Optimized local data
model representing risk model to support
within the entire organization operational activities

■ Possibility of introducing yet another set of inconsistent models,
market data and risk measures, if risk calculations are replicated away
from the trading environment. This approach can however ensure that
all risks are recalculated in a consistent manner.

■ Tendency for the design to become embroiled in the search for the ‘holy
grail’ of a data model that can efficiently represent all financial transac-
tions. There is also the possibility of data model ‘wars’, where different
models used within the organization compete for supremacy.

■ Reconciliation issues with other systems.

Where multiple front end systems are used to feed a risk management
database or data warehouse, the combining of this information can
require significant effort in post processing: cleaning, standardizing and
remapping data into a common format. The common experience is often
that most of the effort in data collection is spent extracting, cleaning and
uploading information, which acts as a barrier to real time information
reporting.

This makes the issue of aggregating risk information into a single
location even more complex than just mapping between data models
and performing additional risk calculations (Table 2.4). It also means
that corporate level risk management is often only performed once a
day, based on market closing positions. Although this is acceptable for
regulatory risk reporting, it means that intra-day risk positions essen-

RISK MANAGEMENT SYSTEMS

48

Table 2.4 Comparison of complexity and requirements at each
level of the risk hierarchy

Trader/Desk level Business level Organization level

Timeline Real time Near real time Once a day

Frequency Constantly Frequent intra-day On demand, but
updated updates typically end of each

day

Risk management Hedging and Exposure analysis Capital adequacy,
exposure analysis and limit concentration,

monitoring expected
loss, capital charging

Complexity Simple Medium Complex
of risk models

tially go unmonitored. This can result in traders being able to take on
significant intra-day risk without it being noticed by the risk manage-
ment group. In fact, if the trader is clever enough and passes positions
around the globe into local books, there is a chance it may never be
picked up in the risk reporting process! What is clearly required is an
approach where intra-day risks can be monitored in a more timely
manner, across all asset classes (as well as ensuring data is correctly
entered). This information monitoring can then be used to feed a data
warehouse for more complex and historical risk analysis and reporting.

SOURCES OF RISK AND LOSS INFORMATION

Although risk associated with trading activity is monitored in front office
trading systems as part of the trading operation, other areas within the
organization may be more appropriate sources for ensuring the complete-
ness and accuracy of all its risk information.

Organizational structure

Financial institutions characterize their operations in terms of front
office, middle and back office (Figure 2.7). Front office characterizes the
trading and sales environment where direct trading interaction with
clients and financial markets occurs. This is where financial transac-
tions are initiated and the part of the organization most focused on
intra-day real time risk management. It is also the area most exposed to
semantic volatility or changing definitions and requirements. This is
mainly because new instruments, changing business models and
market requirements all drive front office requirements. The higher the
level of semantic volatility, the more likely the information captured
and the functionality of those systems is likely to change, with associ-
ated impacts on the maintenance of any risk management infrastruc-
ture. Behind the front office are the middle and back offices. The
middle office is typically a control function that validates the front
office transactions, their recording in internal systems, booking,
validation of risk and P&L (the role of product control) and ensures
that they are correctly processed from an accounting standards
perspective (financial control). The back office is then responsible for
the settlement and processing of those transactions as well as the

49

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

recording of this information in the general ledger or GL (the firm’s
books and records system).

Information sources

Information concerning the financial transactions undertaken in an
organization, and the resulting risks, can be obtained at many internal
points. However, it is important to note that certain risk data and specific
views of that information can be more easily obtained from some areas
(typically the area viewed as owning that information) than others. For
market and credit risk resulting from trading operations, this will be
most easily obtained from the front office systems or where it is validated
in the middle office. Data concerning client collateral that can offset
certain counterparty exposures can be obtained from the credit depart-
ment. Operational risk is prevalent throughout the organization, and
often manifests itself when the organization interacts with the outside

RISK MANAGEMENT SYSTEMS

50

Figure 2.7 Typical organizational structure

Front Office

Middle Office

Back Office

Accounting

measures

P&L and

Risk measures

Increasing

semantic

volatility

Clients

Financial

markets

Custodians

Clearers

world (in settling financial transactions). As a result, sources of opera-
tional risk are often visible in the back office, which can then be tied back
to events in other parts of the organization that were responsible for
originating that risk. Indications of operational risk may also be obtained
from reports and risk assessments generated by the audit department or
operational risk function, data corrections rates recorded throughout the
organization, data inconsistency issues from reconciliation systems
within the product control area and so on.

Certain information, such as market or credit risk will not be available
in back office systems because it is not of interest to them. Back office
systems will, however, provide an accurate record of P&L and other
accounting related information, such as actual cash (Nostro) positions,
which are recorded in the GL. Also, different parts of the organization will
focus on different risks. For example, front office traders may not always
view translation risk (the risk due to FX moves on P&L netted into the
organization’s reporting currency), preferring to focus on local (trading)
currency risk. However, the treasury department will be concerned with
where funding occurs and the transfer of profits into the base currency,
putting in place appropriate FX hedges.

The key lesson is that there is rarely a single point or system within the
organization where the risk manager can go to obtain all the information
required to risk manage the organization as a whole. The precise details
of which systems to utilize, and at what point in the organization this
should occur, will depend on the organization. The types of risks moni-
tored and the manner in which they are measured will also often vary
throughout the organization.

DATA MANIPULATION

Risk decomposition

If only a single type of instrument is traded that naturally aggregates,
the process of viewing the total risk within the portfolio is trivial. For
example, a spot FX trader will buy or sell various currencies. The
amount bought or sold in each currency can simply be aggregated to
show a net balance across all the currencies traded. However, for most
trading desks, and especially when aggregating risk across the organ-
ization, there is no longer an obvious way to aggregate positions in
different instruments. This necessitates the decomposition of the risks
in each instrument into their constituent parts. For example, a forward

51

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

FX (or FX derivative) trader will be taking both spot FX risk as well as
interest rate risk. This risk decomposition requires a mapping of
instrument exposures into a set of underlying risk factors (or sources
of risk). Individual risks then result in a number of equivalent risks
(Figure 2.8) that can be aggregated with other equivalent risks,
enabling the overall risk exposure to be more effectively managed. The
breakdown of risk into these underlying risk factors, and the definition
of what those factors are, requires detailed analysis of the instruments
traded. Typically, the breakdown into risk factors is driven by the
manner in which the instruments are monitored or financially
modelled on the trading desk. As a result, this decomposition should
reflect the trader’s understanding of how the instrument trades as well
as the fundamental drivers behind the instrument. For example, a
corporate bond’s price will be driven by a combination of liquidity,
interest rate levels and the underlying company’s perceived credit
quality, together with any specific credit considerations inherent in the
bond. Given that it is impossible to model or have behavioural para-
meters for everything, there will inherently be some loss of detail as
part of this process. If the decomposition into risk factors is performed
correctly, there should be minimal loss in accuracy in the calculation of
subsequent risk measures using these factors. Care should however be
taken when a business unit trades certain specific risks. These are risks

RISK MANAGEMENT SYSTEMS

52

Figure 2.8 Risk decomposition process

Interest rate risk

Credit (spread) risk

Currency risk

Commodity risk

Equity risk

Liquidity risk

Risk Position

Underlying

Risk

Dimensions

Risk Decomposition

Interest rate risk
Credit (spread) risk
Currency risk
Commodity risk
Equity risk
Liquidity risk

that cannot be attributed to general market movements but are specific
to the asset being managed. Too generalized a risk decomposition
process can result in these risks being omitted.

Risk bucketing

Although the decomposition of instrument risk into a common set of
risk factors enables risks to be aggregated and consolidated on the
individual trading desk, the number of risk factors used across an
entire organization can result in a data explosion. These factors may
also not be used consistently across the organization leading to a
complex risk mapping problem. All this can lead to an intractable data
and risk modelling problem. To address this, the risk factors used by
each desk are bucketed or allocated to some observable or derivable
market driver (and associated risk events). This bucketing process
involves risk allocation and the making of a number of assumptions.
Risk factors mapped to the same bucket will be perfectly corre-
lated and therefore expected to have similar behaviour. The impact of
these assumptions and the mapping process performed will very
much depend on the type and magnitude of any risks and the
trading/business models within the organization. This risk bucketing
process requires a reasonable amount of analysis concerning the
behaviour of the different risk buckets and the types of risks traded
within each portfolio. The bucketing process should not result in the
loss of any key risk information but should capture the essence of the
risks that drive and dominate possible losses within the organization.
Possible approaches include:

■ Equity: map to national (or sector) indexes; model individual stocks;
use a principal component approach

■ Commodities: map to an equivalent futures or cash position

■ FX: map to currency buckets and interest rate sensitivities

■ Distressed (high yield) securities: map to equity-type risk factors since
they behave more like equities than interest rate instruments

■ Bonds: map to an equivalent bond in the nearest maturity bucket or
specified date range or break down into a number of risk equivalent
interest rate positions

■ Individual future cashflows: map to maturity buckets.

53

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

The aim must be to ensure that any assumptions made do not result in
risks being missed or the bucketed risks being unrepresentative of the
actual risks taken. Balanced against this requirement is the need to put in
place a process that is manageable (in terms of data volumes and data
mapping complexity) and achievable. A more simplistic process that
works is clearly preferable to a highly accurate and complex one that will
not be implementable. Similarly, there is no advantage in using a
complex approach that adds little in accuracy for the types of portfolios
managed. For example, equity risk can be broken down in a number of
ways, each resulting in different levels of data and loss of information, as
seen in Table 2.5.

DATA ISSUES

Data types

Data within the organization can be broken down into the following types:

Transactional
This is data concerned with financial transactions. Transactional infor-
mation must be persisted (stored permanently) and its integrity
maintained.

RISK MANAGEMENT SYSTEMS

54

Table 2.5 Examples of the advantages and disadvantages of
different approaches to risk mapping

Mapping Advantages Disadvantages

Individual equity stocks Accurate representation High volume of position
of risk information and

requirement for event
information

Sector indices Moderate data Does not capture equity
requirements specific risk

Market/country indices Lowest level of Does not capture firm
data requirements specific or sector

specific risks

Factor analysis (principal Reasonable data Fails to capture all firm
component analysis) requirements specific risk

Captures some specific More complex event
risk data analysis requirements

Non-transactional
This may be:

■ Dynamic
Data that frequently changes during the trading day, such as market
data or other pricing or event type information. Except at key points in
the trading day (such as end of day, opening prices, snapshots associ-
ated with complex risk calculations), or for historical analysis, there
should be no requirement to persist this information

■ Static
Static data is information that is persisted and remains constant over
a reasonable time period (although updates and additions may occur at
any time). This data is typically associated with instrument definitions,
client details, process flows and so on.

Data quality

In order for the risk management information produced to be of use, the
quality of data input into the process must be as high as possible. The
major challenge in corporate risk management is collecting transactional
data and the loss events associated with its processing. The typical prob-
lems encountered when obtaining this information can be characterized
by the ‘4Cs of data quality’, where data should be:

Complete
Ensure that all data required for input into the risk management process
is captured.

Consistent
If risk data is obtained from multiple systems, any calculated values
should have been modelled in a consistent manner. For example, if an
instrument is traded in multiple locations using different pricing algo-
rithms, the resultant prices and risk measures should be consistent
between those locations.

Correct (or accurate)
The risk data captured should be correct. This requires system validation
and efficient error detection. This is most often achieved through

55

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

exception-based monitoring, which is the automatic highlighting of
potential errors at the earliest possible point. Exception monitoring is
much more efficient and less likely to result in errors being overlooked
compared with utilizing a more manual verification and detection
process.

Current
Data must be obtained in a timely manner (where timely depends on the
usage and requirements for the data). All data should also always refer to
the same time epoch, otherwise offsetting risk transactions entered into
multiple systems may not offset each other (for example hedge transac-
tions), leading to misleading risk analysis.

Failure to obtain high quality data for the risk management process will
result in a significant increase in operational risk.

Because of the importance of obtaining high quality data, effort should
not be expended on developing complex methodologies that are highly
accurate and informative, only for them to add no value due to the poor or
incomplete quality of the data used. It is often better to adopt simpler risk
management approaches higher up the organizational hierarchy and use
the implementation of these to enforce and implement greater position and
data gathering discipline. The nature of aggregating together data that has
not been combined before will result in issues and discrepancies that will
not have previously been observed. These data issues can take a significant
amount of effort to resolve. It is better to understand these as soon as
possible rather than to build the perfect risk management solution only to
then find that it adds no value due to the quality of information available
from the surrounding systems. Data discrepancies and errors are a reality
in any complex system, and so it is important that data can be corrected or
modified in order to ensure that high quality data can be achieved. Ideally
these corrections should be applied to the source of any data, but if this is
not possible there must be the ability to modify the data as it is used
further downstream. This process should ensure that there is a full audit
trail in order to reconcile any differences in source systems and aggregated
data analysis.

Static data

A common problem within financial institutions is that just as trading
systems have been developed as silo applications, so have the maintenance

RISK MANAGEMENT SYSTEMS

56

and storage of the associated static data. The creation of multiple instances
of fragmented static data can result in significant reconciliation and incon-
sistency issues between geographical locations and different business
areas. This can significantly complicate the aggregation of risk information
and increase operational risk within the organization. Consistent and
correct static data is essential for risk management. It is responsible for
providing consistent instrument definitions used in risk calculations as
well as information concerning counterparties to transactions that permit
credit risk to be aggregated. Any instrument definitions should provide
information on fungibility. Fungibility is the standardization and inter-
changeability of financial instruments on the same terms. This enables
parties in a transaction to reverse out the risk associated with the instru-
ment by entering into an offsetting transaction in an identical (fungible)
instrument. This is especially important in markets where multiple instru-
ment identifiers represent the same fungible instrument. Although a trader
will be concerned with not only the instrument to be traded but also the
marketplaces any transaction should be executed on, the risk manager is
only concerned with whether risks in different instruments can offset each
other. Similar issues arise when netting risk exposures to clients; the ability
to net this risk across different transactions will depend on any legally
defined netting arrangement with the client as well as the use of common
client identifiers in transactions across different business units.

To address these issues of fragmented and distributed ownership of
static data, many organizations have moved towards the centralizing
of this information and the use of data guardians who are responsible
for maintaining and ‘cleaning’ this data to ensure it is correct. Even
where centralization of information has not been possible, data
guardians can ensure the consistency of data in each static data store
and, where different identifiers are used, maintain cross-reference
tables. These cross-reference tables can then be used to map any iden-
tifiers into a common representation in order to highlight when iden-
tical risks may be netted against each other.

Because static data now tends to be more controlled, there is an
inherent increase in time before new data is entered or updates are
incorporated. This can be problematic if the trading operation
requires this information immediately before it is able to transact
business. It often perversely leads to the development of localized
static data stores that are less controlled but augment the centralized
and controlled static data and are periodically merged into the main
store. Whatever approach is taken for static data within the organ-
ization, it will need to handle a number of data issues:

57

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

■ Use of unique internal identifiers to handle changes in external
references to data (such as the client name or identifier for an
account).

■ Merging of identifiers or multiple securities. For example, in the
fixed income market, multiple tranches of bonds are often issued,
which merge into a single fungible instrument on a specified date.

■ Ability to set up instruments, which have not yet been assigned an
external identifier, such as those trading in the ‘grey market’ prior to
being officially issued. OTC instruments, because of their unique
characteristics, tend to be represented within the trading system as
part of transactional data rather than as static data. As there are no
standard identifiers or characteristics for these instruments, this does
not represent any major problem except that each system involved in
processing the instrument must be able to represent the salient
points of the transaction for it to be able to perform its processing.
Static data is then only used to represent the standardized aspects of
these OTC transactions. This approach can address some of the
delays in setting up new highly customized one-off instruments
within a controlled static data store.

THE DESIGN LEGACY

There are, unfortunately, few ‘green field sites’, where a blank sheet of
paper is available to develop systems that standardize and reuse func-
tionality where necessary but also provide an efficient and responsive
tailored solution to the individual traders. As a result, any universal
type of approach to enforce a process or technology that does not take
into account the historical evolution of the organization and the
context the systems and technology utilized have to operate in is likely
to fail. What is required is a context-specific approach that under-
stands what the current systems are capable of and why they have
evolved in that manner, but which also addresses the challenges
detailed previously.

Within each organization, there are likely to exist systems and tools for
managing pieces of the risk management puzzle and for collecting the
required information. What is typically missing is the ability to bring this
information together in a complete and consistent manner. This key data
management issue, and the delivery of systems to address it, is at the heart
of many problems within risk management.

RISK MANAGEMENT SYSTEMS

58

Notes

1 J. C. Hull, Options, Futures and other Derivatives (Prentice Hall, 1997)
2 J. James, ‘Credit derivatives, how much should they cost’, Credit Risk (October

1999)
3 See note 1
4 2003 ISDA Credit Derivatives Definitions (ISDA, 2003)

59

THE R ISK MANAGEMENT
CHALLENGE

ch
ap

te
r

tw
o

60

CHAPTER 3

Functional
requirements for a risk
management solution

In order to analyse user requirements and specify and design a system, it is
important to understand the business context and models underlying the
business processes to be implemented. For risk management systems this is
essential as only by understanding the risk policy, business model and the
risks taken can a solution be developed which captures all the appropriate
information. This understanding will ensure that any solution is correctly
developed first time, without significant misunderstandings, and has some
degree of flexibility or future-proofing in areas where requirements are
likely to be changed in the future. Current market conditions are also
demanding a move away from the paradigm of ‘disposable software’.
Developing systems that rapidly become obsolete and too costly, or diffi-
cult, to modify to meet new requirements is no longer acceptable. Instead a
more strategic approach to system specification and design is required so
that these systems can be easily extended to handle any new requirements.

The communication gap between users and those involved in the
development process has been cited as a common cause for project
failure (Figure 3.1). Because of the different backgrounds and context of
end users and developers, it is all too easy for assumptions made by one
to not be appreciated by the other. These inherent assumptions typically
result in functionality being incorrectly implemented or missed from the

61

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e
implementation. The easiest way to bridge this communication gap is to
ensure a common understanding and framework from which a deeper
understanding can grow.

RISK IDENTIFICATION AND MEASUREMENT

Key to the risk management process is the identification and analysis of
risks within the organization, together with their visualization and
reporting. Within the risk management continuum, there are a number of
different approaches to identifying and measuring risk. Many of these
approaches build upon other approaches, providing a complex hierarchy
of modelling approaches, with those used for analysing aggregate risk
profiles equally being applicable to individual sources of risk. There are
typically two approaches used to measure risk within the organization:

1. Empirical approaches that indicate the magnitude of risk but not the
underlying causes or the effect of any individual event on the risk

Figure 3.1 The communication gap between users and developers

Knowledge

and

experience

Different

knowledge

and

experience

Ideas transformed

into verbal

communication based
on mental models and

understanding

Ideas transformed into

verbal communication

based on different

mental models and

understanding

Misunderstandings

RISK MANAGEMENT SYSTEMS

62

profile. As a result it is not possible to determine which events may
result in a specific loss or the precise magnitude of that loss. All that
can be determined is the relative likelihood of an unexpected loss
occurring.

2. Predictive models that link drivers and events to sources of risk in a
manner that enables risk to be mitigated.

Essentially, the first approach is purely looking at the outcome of the
chain of events and sources of risk without determining the causal links.
Predictive models decompose these links in order to provide a greater
understanding of how losses arise. We will now consider each of these
approaches to identifying and measuring risk from a generic, risk inde-
pendent perspective.

Event, sensitivity and equivalent risk-based approaches

From a quantitative perspective, the value or expected loss from a source
of risk within the organization, such as a position in a financial instru-
ment or operational related loss, depends on some function of observable
or unobservable (but deduced) variables or events. These might be
market prices, default events or process related variables such as trading
volume and staffing levels:

This expected loss or return does not represent risk since it is the result of
‘expected’ sequences of likely events impacting sources of risk within the
organization; risk arises when the actual outcome is different from that
which was expected. Expected losses from operating a business unit
should be priced into the cost of transactions. So, for example, if a trade
processing system has a 5 per cent error rate which results in an expected
daily loss of $10,000 then this cost will need to be factored in to the pricing
of all trades. Similarly, if in a credit portfolio 5 per cent of the companies
are expected to default, there will be an expected loss due to credit default.
When the occurrence of certain unexpected events results in a significantly
different level of loss, this additional loss indicates the risks in the business.

Risk sensitivity or exposure to a given event occurring can be defined as
the change in value due to a given change in an input variable. For small
changes in the function variables, this will be equivalent to the first order

expected value/loss � f (x1, . . . , xn)

63

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

(partial) derivative of the price with respect to that variable (since loss is
equal to any negative change in price). Under the assumption that the func-
tion f is well behaved and locally symmetrical about the point, we have:

The sensitivity or possible losses arising from changes in the input vari-
ables can be derived either numerically (by changing the input variables
and recalculating the function to give the change in value) or analytically,
by differentiating the equation f with respect to the required variable.

One of the complexities of operational risk is that this quantitative
approach relies on well-specified models for determining possible losses
arising from operational risk events that can be difficult to derive.

From a hedging perspective, the trader or operational risk manager
will use this calculation, and assuming the model to be a correct repres-
entation of real world behaviour, trade a hedge instrument or take out
insurance that has an offsetting sensitivity or gain should this event
occur. Equivalent risk positions are calculated by indicating the size of
position in an equivalent (more liquid) instrument that would have the
same level of risk should the event or change in pricing variable occur.
This calculation may be made more complex in that the inputs to the
function f may not always be observable and may be sensitive to other
events or variables. Instead, unobservable input parameters may be
derived from other models, resulting in a chain of models, the outputs of
one being the inputs into another (see Figure 3.2).

When considering two different sources of risk where there is no
causal relationship between the two beyond their both depending on
(possibly) the same input parameters, these risk sensitivities can be
added together due to the linearity of the differentiation operation:

While this is still true when modelling operational risk and considering
how the operational risks in two independent business areas combine, it is
however not true when viewing operational risk within different parts of an
interrelated process, due to the causal links between them. This is part of
the reason why operational risk can be so difficult to manage, and requires
the causal nature and dependency of one process on internal events that
may be generated by an earlier process failure to be fully modelled.

∂(A + B)
∂x

=
∂A
∂x

+
∂B
∂x

lossi =
∂f (x1, . . . , xn)

∂xi

RISK MANAGEMENT SYSTEMS

64

Event and process simulation or modelling

Complex mathematical techniques are often used to simulate the actual
or likely occurrence of certain events or changes, and to deduce the
uncertainty and distribution of future returns under these assumptions.
Some of the most common modelling approaches include:

■ Fuzzy logic (ideal for modelling people processes)

■ Actuarial or statistical analysis

■ Game theory for people behaviour in modelling operational risk

■ Causal and structural models: These approaches are used in more
detailed analysis to link events to losses (building a network of causal
effects). They are frequently used in operational risk modelling for
investigating actual process and workflows. They use Baye’s theorem
and conditional probabilities to calculate the effective probability of
losses occurring. They can be time consuming to set up and often only
consider a narrow range of events and risks.

Figure 3.2 The dependency chain of pricing and risk models

External and internal

quantitative inputs

External and internal

qualitative inputs

Model

Model

Model

Model

Input parameters

Data Guardians

Pricing data

Instrument definitions

process definitions

Loss data

…..

sensitivities

Input parameters sensitivities

sensitivities

Input parameters

Data validation

and cleaning

sensitivities

65

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

■ Process models and simulation: This approach is used to model the
linkage between different processes to investigate through simula-
tion, or ‘what if’ analysis, the price or possible loss distribution
arising from sources of risk. Statistical/probabilistic process models
based on hedging strategies and/or expected event process behav-
iour are used to derive the price and market or credit risk of complex
financial instruments.

A wide range of different models are used to price financial ins-
truments or to calculate expected credit or operational losses. Speci-
fic details of these can be found in financial modelling and
operational risk management textbooks1,2 and are beyond the scope
of this book. For all but the most simplistic direct models where
the outputs are directly derivable from observable variables, the
general concept is to model key financial variables or the occurrence of
credit events as random processes and to derive the expected
value (and other sensitivities and statistical measures) for various
types of payouts based on the evolution of these random processes
over time.

Where these models are used to determine the value of financial
instruments, they are often used as the basis for calculating event, sensi-
tivity or equivalent risk metrics, as discussed previously.

Value at risk

Value at risk (VaR) is an approach that uses various probabilistic
modelling approaches to determine the probability distribution for
the overall returns or losses (over a defined time period) for a port-
folio, or the entire organization, based on the statistical evolution of a
number of correlated events (Figure 3.3). By looking at the expected
frequency or probability of loss (or profit), it is possible to deduce the
nth per cent worst-order statistic; that is, the maximum amount that
may be lost n per cent of the time. This approach is typically applied
to market and credit risk, but could be applied to more frequent
operational losses.

The market VaR figures typically imply the amount of proprietary
risk an organization is taking and so can be used to ensure that the
trading model for a business unit is indeed being followed; for
example, a brokerage operation should not be taking significant
proprietary risk.

RISK MANAGEMENT SYSTEMS

66

Stress testing

Stress testing is used to analyse the impact of low probability events that
could result in excessive losses or gains. It is used to augment VaR type
analyses by investigating the impact of unusual and extreme events.
These types of events must be further investigated in case they are more
probable than anticipated. The problem with stress testing, however, is
that it is often difficult to assign any probability to such unlikely events;
all it will indicate is whether such an occurrence could have disastrous
implications for the organization. Stress testing will typically shift certain
pricing variables, ignoring the implications or implied correlations that
should result in changes in other variables.

Graphical representations of stress testing are often used to investigate
the behaviour of the portfolio away from current market conditions. For
example, plotting P&L or hedging information against changes in the
underlying pricing variables is often used to search for unexpected and
significant increases in the level of losses or possible difficulties in
hedging the portfolio in the future.

Figure 3.3 Example of an expected distribution of P&L

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
P&L

F
r
e
q

u
e
n

c
y

– – – – – – – – – –

67

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

Scenario analysis

Scenarios are especially important when there is little data concerning
the likelihood of events and can help in fully understanding a process.
Scenarios can be based on decision tree approaches (see Chapter 5),
highlighting where and when decisions are made and processes can
be influenced. They can also form the basis for disaster and
business continuity planning. When reporting this information
to traders, it is also useful to provide example situations when this
has occurred in the past, together with the actual events that occur in
each scenario.

Scenario analysis is similar to stress testing but is based on a more
complete evolution of all the input variables, as would be expected if
such events were witnessed in the real world. Changes in one part of
the market will occur together with correlated changes in other pricing
variables. Examples of typical scenarios are the market crash in 1987,
Russian Crisis in 1997, exchange connectivity failure, company
defaults and so on. As well as scenarios being based on actual
observed events, anticipatory scenarios of what could happen given
current external and internal drivers should also be considered to give
full scenario coverage.

One of the major problems with scenario analysis (and also many
other portfolio analysis approaches) is that they typically assume a static
portfolio; the implications of increased dynamic hedging or selling off of
positions is not included in the analysis.

Impact probability matrix/risk mapping

Impact probability matrices and risk mappings are visual techniques
used to highlight and prioritize high impact, high probability losses
that can create significant financial damage to the organization
(Figure 3.4). They are often used to visualize qualitative risk assess-
ments, especially for operational risk, but can also be used in the credit
and market risk areas to highlight events or scenarios that would have
a major impact on the organization. For quantitative approaches,
they can be viewed as a specific graphical representation of the proba-
bility of loss distribution, such as that derived as part of the
VaR analysis.

RISK MANAGEMENT SYSTEMS

68

Risk assessments

Risk assessments identify and analyse the sources of risk, as well as high-
lighting those events and drivers that result in losses. They then assess the
likelihood of this occurring (and any offsetting sources of risks). This
information can then be used to derive more complex models and
approaches to modelling risk. When applied in an operational risk frame-
work this approach is usually used in addition to process analysis, which
analyses any failings in the processes (or workflow) as data flows through
the organization. The aim of any risk assessment is to obtain a thorough
understanding of the risks, the magnitude of those risks, how they may be
addressed and the priority in which they should be mitigated. The main
difference between risk assessments and scenario analysis is that the aim
of a risk assessment is to derive those scenarios that will result in signifi-

Figure 3.4 Impact probability matrix

Probability

Low High

Catastrophic risk

Frequent, small

(expected)

operational losses

Ideal

Large frequent

losses probably

leading to

bankruptcy

Low

Impact

High

69

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

cant losses. Risk assessments are most effectively performed when
involving the staff responsible for the sources of risk being assessed.
Checklists, scorecards, questionnaires, structured interviews, workshops
and risk narratives can all be used to facilitate this process.

Key risk indicators and changes in key indicators

A key risk indicator (KRI) is a simple and easy-to-implement measure
based on some observable data that acts as a proxy for actual risk
levels. It may build on the outputs of any of the previous approaches
or be based simply on an internally or externally observed metric. Data
analysis and pattern recognition techniques can be used to identify the
reoccurrence of correlated event patterns, which in the past have led to
high levels of loss. Approaches such as chaos theory can also be used
to identify when periods of chaotic behaviour in external events may
occur and act as early warning indicators of increasing uncertainty.
These approaches are often empirical in nature and, unless there is
a theoretically sound causal link between certain events and the occur-
rence of associated losses, it is difficult to use this approach as more
than an initial warning indicator of changes in the level of risk. Other
techniques should then be used to further investigate the possibility
and likelihood of losses.

Benchmark comparisons

Benchmarking involves comparing risk indicators in one organization
with those in a comparable organization. This technique can be applied
across all the risk classes, for example in market risk this may be the
calculation of relative VaR, where the VaR figure for a portfolio or organ-
ization is compared against that of benchmark portfolios or other orga-
nizations. In operational risk, the impact on equity price of operational
losses (removing effects of market and specific risk arising from balance
sheet composition and leverage) can be used to derive an estimate
of operational risk capital compared with similar organizations. Risk
is therefore quantified not as absolute loss but as underperformance
relative to that benchmark.

RISK MANAGEMENT SYSTEMS

70

Catastrophic impact analysis

Catastrophic impact analysis requires the analysis of certain sources of
risk to determine:

■ whether large losses are likely

■ any internal drivers which increase the likelihood of these losses
occurring

■ changes in KRIs that could act as early warning indicators

■ the contingency measures in place and

■ what can be done to mitigate this risk.

This analysis is reasonably easy to perform but, as with all approaches
to low probability, high impact events, it can be difficult to determine the
likelihood of the events actually occurring.

Catastrophic impact analysis is closely related to stress testing, but the
aim is to deduce those risk events which are likely to result in significant
losses, rather than investigate the losses arising from low probability events.
As a result, it tends to be a much more subjective approach to risk analysis.

ASSET CLASS SPECIFIC RISK MANAGEMENT

Market Risk Measurement

Market risk arises from unexpected changes in the value of positions in
financial instruments due to changes in external market variables.
These risks are usually broken down into the following different types
of asset classes:

■ Commodity risk (including FX risk)

■ Equity risk

■ Interest rate risk.

The key risk management requirements on the trading desk are to under-
stand how risk may be mitigated by trading in instruments with offset-
ting risk profiles and also by understanding the impact of changes in
market prices and variables on portfolio returns.

71

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

Interest rate versus other assets

Interest rate risk tends to dominate the trading in different asset
classes because it dictates the returns and costs achieved in lending
and borrowing money. These returns and costs will vary depending
on the timescales involved, resulting in a yield curve that indicates
how yield varies with the period of lending or borrowing (otherwise
known as the maturity of the instrument). The yields achieved by
different interest rate instruments will vary depending on other factors
such as:

■ Liquidity

■ Tax and regulatory issues

■ Credit risk implications (including counterparty risk)

■ Other risks such as operational risk, model risk, reinvestment
or prepayment risk (where assumptions are made concerning
the prepayment rate of a loan or the future rate cash may be
invested at).

As a result, the achieved return or yield from an interest rate instru-
ment will increase as the risk associated with the above also increases.
This leads to many different types of interest rate instrument trading as
a spread or yield increment over the price of other more liquid or less
risky instruments.

The major interest rate markets are composed of the fixed income,
money and swap markets or instruments derived or based on the
interest rates in these markets (the so called interest rate deriv-
ative instruments). Fixed income instruments pay an agreed interest
rate over the life of the instrument on an agreed notional amount
(the amount lent or used in any interest rate calculation). The interest
rate swap market also provides interest rate exposure based on the
exchanging of fixed and floating (or benchmark) interest rate payments,
where the floating rate periodically resets to the current market bench-
mark rate.

When analysing total returns across the portfolio or organization, it
is important to modify any yields into price behaviour, looking at the
sensitivity of price to yield. The interrelationship between price and
yield in fixed income instruments exhibits non-linearity in that,
depending on the level of the yield, the same change in yield will have
different impacts on the price. This is referred to as convexity, and can

RISK MANAGEMENT SYSTEMS

72

significantly complicate some risk calculations, as assumptions
concerning the linear interrelationship of yield and price will only be
valid for small changes.

Monitoring market risk

On the trading desk, traders will focus on likely (high probability)
market movements and the instruments they will use to hedge against
such events. This breaks down risks into the following types of measures:

■ Delta type risk arising from price changes

■ Gamma type risk arising from non-linear changes in prices

■ Vega type risk arising from changes in the volatility of prices.

When trading fixed income instruments such as bonds, those main
market moves will be parallel shifts and tilts in the yield curve. As
a result the trader will often view interest rate risk in terms of instru-
ment duration, futures or other equivalent hedge positions3 that
provide market-specific definitions of risk sensitivities to key market
changes. These risk metrics reflect the trader’s understanding of what
drives the value of an instrument, how this risk can be hedged and any
residual risk that is left. It is important to note that there are often
many different ways to measure that sensitivity of returns to various
events, based on different assumptions concerning market behaviour.
As a result, when obtaining this information from other systems
outside the scope of the risk management solution, it is important to
fully specify the units and definition of the risk metrics provided and
ensure that these risk metrics can be transformed into a common risk
model. Within the continuum of possible risk models (Chapter 1),
traders will typically be concerned with managing and hedging
risk arising from external events or changes in market variables and
hence will concentrate on the exposure-based risk metric. Higher
up the risk hierarchy the focus changes to one of risk control, and
monitoring the expected distribution of returns and possible losses
given the current risk profile. Aggregate-level risk mitigation using
trader type tools and analysis may also be applied in order to
allow reduction or modification of the risk profile at the macro or
organizational level.

73

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

Credit risk measurement

For investment banks, credit risk management is concerned with realized
or unrealized losses arising from credit events. It arises in a number
of ways:

■ Through traditional banking book activities such as loans and letters
of credit

■ Counterparty exposures in OTC derivative transactions

■ Settlement risk

■ Issuer or underlying name risk in trading equities, corporate bonds,
credit derivatives and so on.

Credit risk is inherently embedded in many different types of
trading. To fully understand the credit exposure to any specific credit
event will therefore require the aggregating of information from across
the entire organization; this will include bond, equity and derivative
trading information, as well as the usual sources of credit risk such as
loans.

The credit quality of a company is monitored by internal credit
departments as well as ratings agencies such as Moody’s and Standard
& Poor’s. This credit quality is indicated by a code that indicates the
likelihood of a company defaulting on its obligations over various
different timescales.

The nature of credit events is that they occur suddenly and often
without any pre-warning. This means that any solution must be able to
quickly indicate the exposure of the organization to that credit event
occurring, using up to date and complete information.

Probabilistic approaches to credit risk require the determination of the
likelihood of a credit/default event occurring and then the expected
loss/exposure that would follow. Typically this information is deter-
mined from current market data, historical data or analysing the quality
of a particular company’s balance sheet. The metrics used to quantify
credit exposure include:

Exposure in the event of default

■ Percentage of actual or notional amounts affected by the credit event
less any likely amount recovered (expressed as the recovery rate)

RISK MANAGEMENT SYSTEMS

74

■ Replacement or market value, reflecting the value of the credit expo-
sure prior to any event occurring. This will vary over the life of the
exposure. An additional ‘add on’ may be included to reflect future
credit exposure that differs from any current exposure.

Change in market value of a financial transaction due to a change in the credit
quality of a company
Reduction in the market value of a financial transaction due to changes in
the market’s perception of any credit risk in the transaction. This may
arise from a perceived increase in the likelihood of default or a reduction
in likely recovery rates should a default occur.

Loss distributions
VaR type approaches that include the diversification effects and correla-
tion issues between different types of credit defaults. The exposures at
the portfolio level are often determined through simulations of market
and credit events or analytical approximations to this.

Credit models for pricing credit risk are typically based on one of two
main approaches:

■ structural models such as those introduced by Merton,4 which use
balance sheet information to quantify the likelihood of default and
level of recovery

■ reduced form models which do not refer to the capital structure of the
underlying company but instead model the probability of default and
resultant loss, the enhancement in return due to credit risk or the
probability of a change in credit quality.5 This information may be
derived from current market prices for instruments containing credit
risk by determining the amount of additional yield or return that can
be attributed to credit risk in the instrument, by using historical
default or credit transition information or calibration.

Internal ratings-based approaches

The internal ratings-based approach to modelling credit uses a list of
credit drivers that influence the credit quality of a company and assigns
a weighting to each of these reflecting the importance of that driver in
assessing the credit quality of the company. These drivers will range from

75

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

quantitative information such as financial ratios to qualitative infor-
mation such as the quality of the management, industry attractiveness
(barriers to entry, growth and so on). The relevant drivers and weights
will differ depending on the type of company, its industry and so on. To
generate an internal rating for a specific company, each driver is assigned
a score, which is then multiplied by the weighting and summed across all
the relevant drivers to give a total score for the company. This total score
is then mapped to an internal rating.

Counterparty risk

Just as pricing risk is constantly monitored by traders, total counterparty
credit exposure arising from entry into certain financial transactions
should also be constantly monitored. This exposure will vary with
changes in external market and other pricing variables that impact the
value of collateral and the value of ongoing OTC or unsettled transactions
with that counterparty. Credit exposure is normally controlled through a
credit limit monitoring process. If these credit limits are divided up across
the organization then being able to rapidly obtain any clearance prior to
executing the transaction is unlikely to be a problem; the business unit
should be aware of the current credit exposure to each counterparty due
to transactions it itself has originated. This however means that any coun-
terparty must deal with each business unit as if it was a separate oper-
ation, which is not always desirable for the client. If a single global limit is
required across all business lines then performing a limit check will
require the aggregation of counterparty risk globally across all business
lines, taking into account portfolio effects, economic offsets and correla-
tions, as well as netting (if the transaction is supported by a valid netting
agreement). This can be a challenging requirement to address in a timely
manner. Because of the timeliness with which this information is required,
these checks are often performed retrospectively or only performed before
execution of transactions that result in a significant level of credit risk. If
they are performed retrospectively, any resulting limit breaches will not
be noticed or resolved until after the transaction has been executed.

Customer limits are usually set according to the following factors:

■ Quantitative factor: the ‘size’ of the company, for example, the market
capitalization or net asset value of the company

■ Qualitative factor: the rating of the company

RISK MANAGEMENT SYSTEMS

76

■ Length of deal

■ The inherent credit risk and level of recovery that may be achieved in
the event of a default event.

Calculating the recovery rate that may be achieved in the event of
default can be exceptionally difficult, depending on the seniority of any
claim, the existence of any guarantees or covenants and the amount of
collateral available.

Traders should also consider the cost of providing credit to a counter-
party by taking account of the total cost of the transaction. Depending on
this cost they should modify any mark-up of a financial transaction to
cover both the expected loss resulting from a default of the counterparty,
as well as the cost of capital required to cover any unexpected losses. This
‘cost of credit’ will vary depending on the details of the counterparty, and
may even be negative if the deal has some risk-offsetting features.

Operational risk measurement

Whereas credit and market risk are reasonably well understood, oper-
ational risk measurement is still a new area of risk management. Prior
to regulatory pressure to measure and manage operational risk, the
precise definitions of the types of operational loss or event and the
data on which to base statistical approaches were neither plentiful nor
consistent across or within organizations. Even with the Basel 2
Accord, it is likely that the models, data and definitions will evolve
over time. As a result, operational risk losses tend to be difficult to
predict, covering a wide range of drivers and sources of risk such as
fraud, errors arising from loss of key personnel, systems failure,
multiple data entry, excessive trading volumes, poor vendor or project
management, terrorist activity and so on. Any organization is an open
socio-technical system, which can fail in many different ways. The
complexity of human behaviour makes it extremely difficult to model
and risk manage these systems in a quantitative manner, and these
behaviours and motivations can change unpredictably over time. As a
result, many of the approaches to operational risk management tend to
have a subjective element to them and take a reasonably simplistic
approach to modelling operational risk. Alternatively they may take a
reactionary approach, ensuring that any potential problems are identi-
fied and resolved as early as possible before they result in significant
losses. Subjective methods can provide a more holistic approach than

77

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

detailed quantitative analysis, especially when the underlying model
and data are likely to be very poorly specified or understood. This
complexity tends to lead to many differing approaches, such as the use
of KRIs, risk assessments and more qualitative modelling approaches
in order to obtain a more complete and robust approach to operational
risk management.

Operational risk should be of key importance to an organization
because it can produce the most devastating losses (as witnessed by
events such as those instigated by Nick Leeson at Barings,6 and the
failure of the Globex electronic exchange in 2003).7 Also, when an
extreme event does occur, there is likely to be a high level of correlation
with other extreme events and an accompanying element of what can go
wrong will go wrong – and all at the same time.

Loss databases

The implementation of the Basel 2 Accord by many local regulators will
demand the maintaining of a loss database to record all losses above a
given size. They may also record near misses, or losses that almost did or
could have occurred.

The recording of operational losses should distinguish between those
that were expected (dealt with through pricing) and those that were not.
As with all historical data, they are a weak signpost; useful for reducing
cognitive biases when reviewing historical events, backtesting and vali-
dating models but of limited use in predicting future losses. This is espe-
cially true when internal processes and other sources of operational risk
have evolved over time. Associated with each recorded event should be
a full risk assessment, including severity, impact and control assessment,
making the loss database more of a comprehensive incident management
system. It should associate a cause with each loss event that can be
analysed and mitigated if necessary.

The main barrier to collecting this type of data is that operational risk
information is not always transparent – it is not posted on publicly acces-
sible locations in the same way as market or credit risk. It relies on a risk-
aware culture to always ensure the information is highlighted and
recorded (rather than a culture of fear where managers worry about
the information being used to monitor their performance). It will also
require adequate budgets to be allocated in order to implement the data
collection process in a robust and non-onerous manner.

RISK MANAGEMENT SYSTEMS

78

Basel 2 and operational risk

The use of a key risk indicator as a proxy for the level of operational
activity within the organization or at the business level, multiplied by an
appropriate factor, is the basis of the basic indicator approach and stan-
dardized approach in the new Basel Accord. The advanced measurement
approaches extend these simple techniques by considering more proba-
bilistic methodologies for the likelihood of loss and the magnitude of that
loss when it occurs, with the operational risk broken down by business
line and decomposed into various risk categories (see Chapter 2). These
approaches range from using causal type models linking events and
losses, to deducing the probability distribution for a loss of a given type
occurring over time and the probability distribution of the magnitude of
loss when it occurs, scaled by some exposure level indicator.

The main problem with operational loss databases is that by defini-
tion, in order to observe an event, it must occur with reasonably high
probability. This means that loss databases are ideal for recording the
high probability, frequent events with a high level of statistical accu-
racy, but provide little information concerning low probability events.
The distributions of loss events also tend to vary dramatically based on
the severity of the loss. Instead, these low probability parts of the
distribution are usually defined using:

Figure 3.5 Approaches to determining the operational risk probability
distribution for the magnitude of loss when an event occurs

0

10

20

30

40

50

60

Frequency

I
m

p
a

c
t

Extreme value

theory, stress

tests and

expert opinion

Curve fitting

Statistical analysis

and non-parametric

methods

Expected Loss

79

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

■ Subjective informed opinion

■ Extreme event theory to estimate the likelihood of unlikely but signif-
icant loss events8

■ Scenario analysis (‘what if’ type questions)

■ External loss data to increase the universe of available data in order to
obtain greater statistical significance.

External loss databases can provide a wider range of data, including
low probability, high-impact events. The quality and reliability of this data
should however be analysed to ensure it is unbiased and complete. It may
also not be representative of operational losses within any given organ-
ization and so will need to be adjusted in order to be directly applicable. It
can however be used as the basis for developing operational risk scenarios,
as well as acting as a benchmark with which to compare the organization.

These individual loss distributions are combined under various
assumptions concerning the correlation and interrelation of different
types of events and the magnitude of loss to give a combined loss distri-
bution for the organization or business unit. Obtaining this multivariate
loss distribution can be a complex process if the assumed or deduced
distributions are unusual or the interaction of events highly complex.

Although determining the probability/loss distribution indicates the
magnitude of the problem, unless it is possible to model the actual
processes that resulted in those losses, it will not be possible to determine
the sources generating those risks and how risk can be mitigated within
the organization.

VaR APPROACHES

VaR is commonly used to assess the likelihood that certain levels of loss
will occur within a portfolio. Whereas exposure sensitivity approaches
benefit from the linearity of the differentiation operation, this is no longer
true when considering a more probabilistic approach. The CAPM high-
lights the issue when analysing the statistical variance in returns of an
equity portfolio. As discussed in Chapter 1, statistical measures look at the
distribution of returns and typically the width or variance of that distribu-
tion. Looking at the variance (or volatility) of a number of equity positions,
the variance of the total position is no longer a linear combination of the
variances of the individual position, due to the non-linearity of the vari-
ance operator. This non-linearity arises from the benefits of diversification

RISK MANAGEMENT SYSTEMS

80

(the ‘portfolio effect’) and imperfect correlations between different
positions. This can dramatically complicate the process for determining
statistical measures for the aggregate corporate portfolio distributed across
multiple trading systems and geographical locations. When looking at the
variance of two possible random losses, A and B:9

var(A + B) = var(A) + var(B) + 2 covar (A,B)

Whereas variance is a measure of how ‘wide’ a probability distribution is,
covariance is a measure of how changes in one variable are related to
changes in another. As a result, the total risk of the combined position
may be less than the risk of each position individually; in fact if one posi-
tion is a hedge for the other, the covariance term will be negative, indica-
ting a reduction in the combined risk. The three main approaches to
calculating VaR are described below.

Variance/Covariance approach

This approach uses the sensitivities of the positions within a portfolio to
various risk factors or buckets together with the covariance matrix for all
these risk factors, in order to derive the expected variance of the overall
distribution of returns. It is assumed within this approach that changes in
return due to certain events occurring remain the same for different states
of the external and internal risk drivers. This may be valid for low levels of
event volatility or short time periods but is likely to break down in more
extreme markets or over long time horizons with non-linear instruments.

Under the assumption that the resulting distribution is statistically
normal, it is possible to determine what percentage of the distribution is
below a certain level by using normal distribution tables (showing the
cumulative probability) or by using a polynomial equation that approxi-
mates the cumulative normal distribution. Fortunately, this calculation
can be simplified through the use of linear algebra operations which are
supported by many third party libraries.

Monte Carlo simulation

In Monte Carlo simulations, sequences of pseudo random variables are
generated with the required distributions and correlations. The term
Monte Carlo simulation comes from the similarity between games of

81

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

chance and the generation of a sequence of random numbers. The only
requirement for this approach is that it is possible to define the multi-
variate probability distribution for the risk factors or buckets.

This approach is often used to model and price complex financial
instruments whose price depends on the random evolution of a number
of pricing variables. As a result, this technique has applications in market,
credit and operational risk analysis. The derived market covariance
matrix (between the different risk factors) is used to convert the generated
independent random numbers into a sequence of correlated events that
model the expected real world behaviour. From this, hypothetical distrib-
utions of P&L can be determined, which are then used to deduce the
required VaR order statistic (for example the level of losses below which
five per cent of the final distribution of P&L lies).

Historical simulation

Historical simulation involves the calculation of portfolio returns when
past historical events are replayed. It provides a sanity check against more
complex modelling approaches such as Monte Carlo based VaR, and is an
extremely robust approach that is easy to interpret and understand.

Summary

As can be seen from Table 3.1, the most appropriate approach for any
particular organization will depend on the types of instruments traded,
the skill level of risk management staff and the future strategy of the
organization, together with the cost and complexity of implementing
each approach. For example, there is little point in implementing Monte
Carlo VaR for a financial institution that only trades cash equity; the
linear risk profile and availability of market data for these instruments
imply that historical simulation or a variance/covariance approach
would be much more appropriate. However, if the organization trades
illiquid instruments (such as emerging market debt), the lack of available
time series data for these instruments will make historical simulation
difficult. Historical-based approaches also assume stationarity of market
data (that is, the future is the same as the past) and so are not appropriate
where step changes have occurred in the markets. For non-linear risk
profiles, where the level of risk does not change linearly with changes in
event levels (such as those with inherent optionality), this non-linear

RISK MANAGEMENT SYSTEMS

82

nature of returns makes the risk/return profile slightly more compli-
cated. The impact of this non-linearity will also depend on the expected
size of any change, and therefore on the time horizon and daily volatility
level (that is, longer time horizons and more volatile markets require
more complex approaches to the analysis of non-linear instruments).

As no single approach is able to address all the possible issues, it is not
uncommon for a combination of approaches to be implemented. This
avoids the possibility of results that are unidentified artefacts of the
approach, rather than being truly due to the underlying risk positions.
For example, variance/covariance and Monte Carlo approaches often
assume that the individual underlying distributions of the risk factors are
normally distributed. This assumption dramatically simplifies the
processing of these models, but it is known that most financial distribu-
tions exhibit skew and kurtosis (that is, the distribution is not symmet-
rical about the mean and the edges or tails of the distribution tend to
predict a greater probability to low probability events).

Table 3.1 Advantages and disadvantages of VaR approaches

Approach

Variance/ Historical Monte Carlo
Covariance simulation simulation

Difficulty to Medium Low High
implement

Computational Low Medium High
complexity

Accuracy (non-linear Low Medium High
portfolios)

Accuracy (linear Medium Medium Medium
portfolios)

Handling new Medium Low Medium
instruments

Handling structured Low High High
products

Assumed market data Yes No Yes
distribution

Intuitiveness of results Medium High Medium

Market data processing Medium Low High
requirements

83

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

THE RISK ANALYSIS PROCESS

The risk analysis process requires sources of risk to be analysed and
investigated in the context of current internal and external events (Figure
3.6). Some of the data used in the risk analysis process may not be avail-
able for all data points or its quality may be questionable. As a result,
various mathematical models or techniques will be needed to deduce all
the required data points based on curve fitting, interpolation or extrapo-
lation of data, or more complex approaches such as pattern recognition
or neural networks.

Statistical approaches may extend the sensitivity approaches by asso-
ciating probabilities against various events that result in possible losses,
as indicated by calculated sensitivities. These events may be market price
moves when calculating market VaR or internal operational events for
operational VaR.

All VaR approaches require the use of event data either directly or as
the source of information to calibrate to. There are many choices in how
this data may be analysed and cleaned which are beyond the scope of
this book. The data cleaning will consist of comparing disparities
between different data sources, handling missing data, deciding the time

Figure 3.6 Statistical risk analysis process

Source 1

Source 2

Source n

Event data

collection

Data

cleaning and

validation

Derived event

parameters

Risk analysis

and modelling

Data

cleaning and

validation

Risk/Sensitivity

decomposition and

Bucketing
Risk statistics

Source 1

Source 2

Source n

Transactional

and operational

data collection

Risk analysis
and modelling

Risk/Sensitivity
decomposition and
bucketing

Derived event
parameters

RISK MANAGEMENT SYSTEMS

84

period of data to use in deriving model parameters, frequency of data
(intra-day and close-of-day data can vary significantly), and the
weighting to be placed on data from different points in the past (typically
some form of exponential weighting is used to give more ‘weight’ to
more recent data and events). Market data may also be distorted by
market anomalies or changes in the way in which certain financial instru-
ments are traded, which will result in the past behaviour being very
different from that currently seen.

A trader will inherently always try to exploit market or internal
mispricings or risk. As a result, the risk manager should always be moni-
toring trading activity to ensure traders are not exploiting deficiencies in
the data or modelling approach and how it determines risk.

One of the key requirements for risk monitoring is to compare changes
in the risk profile over time. These changes will arise from changes in:

■ Sources of risk

■ Occurrence of actual events

■ An increase in the likelihood of certain events that modifies the risk
associated with a given source; for example an increase in interest rate
levels will increase credit risk.

Distinguishing between risks arising from changes in the sources of
risk, as a result of business activity and risk mitigation, and those due
to changes in the likelihood or impact of internal and external events is
a major challenge for the risk manager. This is especially true when
viewing statistical measures; the derivation and use of new covariance
matrices or historical data will result in a change in the level of risk
associated with a given portfolio. This occurs purely from a reassess-
ment of risks due to changes in events. In addition, risk will also
change due to various new sources of risk and the results of risk miti-
gation. If event data is only periodically updated, the change due to
this should be understood before investigating changes in the under-
lying sources.

CHANGES IN RISK WITH EVENT LEVELS AND TIME

When simulating or modelling the evolution of risk events over time, it is
important to understand how the risk exposure arising from each source
of risk changes as event levels and time change. For some sources of risk

85

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

this may be constant over time and vary linearly with event levels. For
many sources however, a more complex relationship will exist. As a result,
when calculating aggregate risks using a Monte Carlo VaR type approach,
stress testing or analysing various scenarios, it may be necessary to recal-
culate individual risks or sensitivities as events evolve. There are several
approaches to this problem, each with differing integration, functionality
and processing requirements. The recalculation of risk can be obtained by:

Full recalculation through time and as modelled event levels change
This approach is highly accurate but adds a high level of computational
complexity and requires either access to the models that can recalculate the
individual risks or the ability to pass and receive the required information.

Sensitivities ladder approaches
This provides a ladder of current risk sensitivities with different event
levels, but does not indicate how this may vary over time, which can lead
to problems with path-dependent risk over long time periods.

Calculated grids of risk over time and with differing event level
These grids are used to indicate the individual risks at various points in
time and at different event levels. This can be computationally complex but
decouples the calculation of these sensitivities (which may be performed in
front office systems that are difficult to access) from later risk calculations.
This approach does not however include path-dependent evolutions of
events into the calculation.

RISK ANALYSIS AND REPORTING

It is not unusual for the P&L and risk to be driven by a relatively small
number of sources of risk. To understand whether this is the result of
multiple sources throughout the organization or a concentrated source
within one part of the business, it is important to retain the detail of
where each source is located. A single VaR figure has limited benefit
when risk managing the organization or a given portfolio. What is
important is how this figure varies with time and how it relates to other
risk analyses (such as scenario testing).

As a result, risk analysis requires many different views on risk within
the organization, with the ability to decompose this risk into a number of
different dimensions. Once the risk context has been set, the organization
can decide whether any risks should be mitigated and the most effective

RISK MANAGEMENT SYSTEMS

86

manner in which this can be achieved. The volume of information that is
likely to be presented to the risk manager will require the use of graph-
ical methods and analytical analysis tools in order to prevent information
overload.

Risk reports should be timely and accurate, highlighting excessive risk
concentrations where the level of risk is above a defined acceptable level.
In order to ensure they are used, any reports should also be concise and
add a commentary to highlight key details within the report, with the
ability to provide more detailed analysis where required. The risk
analysis process may require ‘what if’ analyses to be performed. This can
occur in one of two ways:

1. What happens if a given risk event occurs?

2. How does the risk profile of the organization alter if certain changes
are made to it?

This analysis should identify potential future risks or failure in the risk
management process. This may vary from plotting the P&L impact of
various changes in events, highlighting situations that may prove difficult
to hedge in the future, or breaking down risk by trading strategy to ensure
that the strategy is indeed being followed.

This risk analysis and reporting process should:

■ Identify risks and be automated where possible

■ Assign responsibility and investigate any unexpected losses

■ Resolve any issues

■ Monitor and analyse and assess why losses or gains occurred.

These analyses are vital to understanding and mitigating risk within the
organization.

Risk breakdown

Risk information has many dimensions along which it can be broken
down and visualized. One of the major problems for the risk manager will
be in handling the inherent information overload from dealing with the
high volume of information. Customized reports and visualizations will
enable the risk manager to identify unacceptable areas of risk and reduce

87

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

information overload. Often this will necessitate the ability to generate
customized reports and graphs to further investigate certain sources of
risk, along with the ability to ‘drill down’ and understand the data that
comprises each risk. There are many ways that the sources of risk within
the organization can be decomposed but it is likely to consist of at least:

■ Originating area or trade grouping (business unit, trader, region,
trading strategy, trading book and so on)

■ Magnitude of risk

■ Risk metric used

■ Type of risk/risk drivers

■ Source of risk.

Just as decomposing the risks into different groupings can highlight
the major contributing sources of any risk, aggregating this information
can show excessive risk concentrations. For example, credit risk is likely
to occur throughout the trading environment. This risk may combine in
undesirable ways that can be highlighted by:

■ Grouping of related entities into legal and economic structures

■ Global exposure to companies in the same industry

■ Global exposure to entities domiciled in a given country.

This can place significant demands on the ability of static data in the
organization to represent these complex credit relationships between
counterparties and issuers.

The non-linearity of the VaR of individual portfolios, which will not
sum to produce the VaR for the total combined portfolio, highlights how
individual sources of risk add to the total risk. Marginal risk for a
number of sources of risk is defined as the difference between the risk
with and without those sources being included, and highlights the
amount of risk arising from adding that specific source to the portfolio.
Low marginal risk highlights sources that are acting as hedges to other
risks and can be used to indicate the effectiveness of any hedging trans-
actions. Sources that have high levels of marginal risk will be major
contributors to the total risk, not being offset by other risks within the
organization. A similar concept to highlight the level required to hedge a
source of risk is incremental risk, which indicates the change in total risk

RISK MANAGEMENT SYSTEMS

88

when the source weighting is increased. Inherently all these incremental
and marginal calculations indicate the diversification benefit from intro-
ducing additional sources of risk into to the organization.

The diversification benefit between different business units is often
split between them, reducing their individual economic capital require-
ments, so that the total economic capital employed does actually equal
that allocated across all the business units. This approach should ideally
be used within the business decision process to facilitate the optimal
pricing and selection of transactions. For example, a trader should be
encouraged to undertake (and price accordingly) certain transactions
which reduce the total organizational risk. Even if this cannot be
performed across the entire organization, it should at least be performed
within the business unit. So for example, a trader should more competi-
tively price a swap transaction which hedges an existing risk, or results in
the least increase in marginal risk due to portfolio diversification or risk
offsetting effects.

Data granularity and source

When aggregating data within the organization, decisions must be made
on the granularity of data required in the risk management process. Just as
with a map, users require different scales and levels of details, depending
on the use to which they are going to put the information; a street map is
unlikely to be of use for someone trying to travel from London to Paris, just
as an atlas covering Europe is unlikely to help someone find a street with a
given shop on it. At the trading level, full granularity and detailed infor-
mation are required for the in depth management of a subset of the organ-
ization’s portfolio. Further up the risk hierarchy, a much more aggregated
and generic view is required. The complication comes in that those higher
up the risk hierarchy may need to be able to see the detail at the individual
portfolio level when the aggregate view is not as expected.

As a result, rather than the problem being similar to users who travel
in a plane at different heights, looking at different levels of detail, what is
often required is a solution similar to a helicopter that can vary its height,
descending to bring into focus the required detail where necessary.

Notes

1 J. C. Hull, Options, Futures and other Derivatives (Prentice Hall, 1997)

89

FUNCTIONAL REQUIREMENTS
FOR A R ISK MANAGEMENT

SOLUTION

ch
ap

te
r

th
re

e

2 M. Cruz, Modeling, Measuring and Hedging Operational Risk: A Quantitive Approach
(John Wiley and Sons, 2002)

3 See note 1
4 R. Merton, ’On the pricing of corporate debt: The risk structure of interest rates’,

Journal of Finance, 29 (May 1974) 449–70
5 D. Duffie and K. Singleton, Credit Risk: Pricing, Measurement, and Management

(Princeton University Press, 2003)
6 J. Rawnsley, Total Risk, Nick Leeson and the Fall of Barings Bank (HarperCollins, 1995)
7 Finextra, ‘Traders head for the pits as Globex falls over’ (Finextra.com, 2 May 2003)
8 See note 2
9 G. Grimmet and D. Stirzaker, Probability and Random Processes (Clarendon Press,

1982)

This page intentionally left blank

PART II

Risk Management
Technology

This page intentionally left blank

93

CHAPTER 4

The software
development

lifecycle

The software development lifecycle describes the process whereby
requirements are transformed into a set of computer instructions or soft-
ware that results in a system that addresses those requirements. The
process can be broken down into a number of key stages (Figure 4.1):

■ Requirements: the gathering of the requirements for the new system

■ Analysis: the creation of an analysis model that specifies what func-
tionality the system will provide in order to address the requirements

■ Design: takes the analysis model and refines it into something that can
be implemented

■ Implementation: the execution of the design in terms of specific tech-
nologies such as programming languages, databases and so on. The
result of an implementation is software code, together with support-
ing data, scripts and configuration information that provide a
working system

■ Testing: validation of the implementation to ensure that it meets the
requirements for the system. Once the system has been tested and vali-
dated, it may then be deployed to the end users.

There will be varying levels of iteration both within and between these
stages, which will continue throughout the life of the software. For
example, although a specific requirement has been provided, this may
be exceptionally expensive to implement, whereas a solution with
similar functionality could also address this need but much more easily
and cheaply.

There are many different models for implementing the software devel-
opment lifecycle, each of which indicates a different sequence, level of
iteration, interaction and overlap between the stages of the software
development lifecycle shown in Figure 4.1. The most common are:

Waterfall
In the waterfall model, the stages of analysis, design, implementation
and testing are treated as sequential steps, with the completed outputs
of each stage leading into the next, like a cascade of waterfalls (Figure
4.2). It does not reflect the reality of most modern software develop-
ment, especially within financial organizations where requirements are
often highly complex and fluid due to ongoing changes in the business
model, external markets or regulatory environment. Often changes or

RISK MANAGEMENT TECHNOLOGY

94

Figure 4.1 The reality of the software development cycle

Requirements

Analysis

Analysis

Design
Implementation

Testing

RequirementsDesign

Implementation

Testing

Model Reality

Analysis

Implementation

Testing

clarification of requirements lower down in the development process
need to be fed back up the waterfall. Alternatively, changes may need to
be introduced into the requirements because of limitations discovered
elsewhere within the organization. The waterfall model can be effec-
tively applied if the risk management problem is well specified and
where the requirements are clear and concise, and will not change
during the development process. However, even when the develop-
ment process is more iterative, the waterfall model can still provide a
framework for managing the development process within each itera-
tion or enhancement.

V
The V model contains similar stages to the waterfall model, the differ-
ences being that the outputs of each stage of analysis and development
are linked to different types of testing (Figure 4.3). The output from the
requirements specification drives the acceptance and system tests, the
output from design drives integration testing, and the output from
coding individual sections of code drives unit testing. The precise details
of testing will be discussed further in Chapter 8.

95

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Figure 4.2 The waterfall lifecycle model

Requirements

Analysis

Design

Implementation

Testing

Iterative spiral
The iterative spiral model encapsulates the recursive reality of soft-
ware development by modelling the software lifecycle (including inte-
gration) as a continuous loop of requirements capture, analysis,
design, implementation, testing and deployment. The problem should
be analysed using enough time to understand the problem domain
in its entirety, but without wasting further time on defining all the
details; these will be further specified, refined and modified through
further iterations. This approach works well in turbulent or fast
moving environments, where requirements constantly change or mis-
understandings are likely and time to delivery is key. As a result, it is
often used in the development of front office trading systems and
provides continuous evidence of progress. Iterative development is
at the heart of the Rational Unified Process® (RUP®),1 which is a
methodology based on ideas and experiences from a large number of
software projects and which is used by a large number of financial
institutions.

Continuous Integration
Continuous integration takes the iterative spiral to the extreme of constant
ongoing integration, building and testing of the system. This process
should occur many times a day and be fully automated and reproducible.

RISK MANAGEMENT TECHNOLOGY

96

Figure 4.3 The V model for software development

Requirements

and Analysis
User Acceptance

Tests

Design Integration Tests

Implementation Unit Tests

Continuous integration addresses the problem of combining the efforts of
many developers. Having integrated all the development effort within the
project, any issues or bugs are immediately evident and can be quickly
tracked down to the small amount of code that has recently been inte-
grated. Frequent integration also helps prevent conflicts between different
developers working on the same area of code.

Extreme Programming (XP)
XP is a lightweight methodology that addresses the needs of small devel-
opment teams faced with vague and changing requirements. It includes
many of the ideas from iterative development and continuous integra-
tion and highlights the need to write tests prior to producing any code.
Controversially, it also challenges some of the more formal allocations of
roles to specific individuals, preferring all team members to participate in
all aspects of the development process.

The precise level of formalism, the lifecycle model implemented and
other attributes of a project will depend on the context of the problem
and the constraints imposed by the organization. This section of the book
will be focused on each of the key stages of the software delivery life-
cycle. It should be accepted that the precise order and interaction
between each of these stages may be more confused and complex than
may be implied by linearly reading this book!

There are many interested parties in a new system, many of whom may
not be direct users of the system. For example, a corporate risk management
system will be used directly by the risk management group, provide reports
to traders and senior management and enable the organization to meet its
regulatory requirements. Because many of those with an interest in the
system (the board, regulators, traders) are not direct users, the term stake-
holder will be used to indicate any group that has an interest in the system.

A RISK BASED APPROACH TO THE SOFTWARE
DELIVERY PROCESS

The risk management techniques discussed in Part I apply not only to
managing risks arising from the daily operations of the organization but
equally to all the activities it engages in. This includes the software devel-
opment process. It is important not only to develop risk management
systems that meet the specified requirements, but also to perform this in
a manner that provides the greatest benefit for a given level of risk.

97

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

The software development process should aim to reduce risk (subject to
cost constraints) wherever this is possible. These risks may arise from:

Operational failure
The risk of losses arising from failure of the system.

Project failure
The risk of project failure leading to either no system, or an incorrect one,
being developed and delivered.

Integration and surrounding process failure
The risk that surrounding systems or processes will fail as a result of
changes in infrastructure, the failure to integrate the new system with
other systems or changes in workflow. The term workflow is commonly
used when analysing technical systems and describes the way in which
people and systems interact in order to complete a task.

Strategic failure
The inability of the system to be able to be efficiently enhanced to
support the strategic direction of the organization as a result of poor code
structure or inflexible software engineering.

MODELLING THE PROCESS OF IMPLEMENTING
A SYSTEM

In the software development lifecycle, requirements are analysed and
generate a logical or conceptual design that is converted into a physical or
actual implementation using specific technologies (Figure 4.4). The chosen
technology should add value to the project and support the delivery of the
project requirements. Moving down each level moves the system closer to
physical reality, while moving up the hierarchy shown in Figure 4.4, results
in a model that abstracts away from the specific details of how the require-
ments will be implemented. At the highest level, the requirements model
will detail the functional behaviour of the system from the perspective of a
user or external system. The requirements model considers the system as a
black box, to be interacted with and does not consider the inner workings
of the system or how the system may be implemented. The analysis model
will convert these requirements into a robust and flexible framework
detailing how the proposed system will address these requirements in
terms of the structure of data and processing. The design model refines the

RISK MANAGEMENT TECHNOLOGY

98

ch
ap

te
r

fo
ur

analysis model into a structure that can be implemented, considering how
the system and functionality can be decomposed into system units or
blocks and the physical representation of any data. Finally, the system is
implemented, deployed and optimized to be used on a specific technology
and integrated to work with other systems.

These models highlight the difference between physical and logical
models. Logical models are concerned with what the system does, often at
a conceptual or abstract level. Physical models are concerned with how
this is achieved, who performs particular operations and where processes
and systems will be deployed. The key challenges are to ensure that:

■ Each level is adequately decoupled to aid maintainability, so that
changes in one level do not dramatically impact other levels. Changes
in technology are constantly occurring and it is important that any
project is not tied into obsolete or unsupportable implementation
technologies. For example, it should be possible to change the under-
lying middleware (Chapter 6) without enforcing changes in the
requirements. Similarly, business requirements are constantly
evolving, so any implementation must be able to adapt to enable these
changes to be met.

99

THE SOFTWARE
DEVELOPMENT L IFECYCLE

Figure 4.4 The models used in the development lifecycle

Analysis Model

System or Design Model

Implementation Model

Risk

Risk

Requirements Model

Risk

User/External

Constraints

Model Transformation

Robustness and

Flexibility

Constraints

Model Transformation

Logical

Implementation

Constraints

A
b
st

ra
ct

io
n

Model Transformation

Technical and

Infrastructural

Constraints

■ Each level should consider and map on to the model at the next level.
This should mean that the partitioning of business functionality and
data in the design model should enable the design to exploit features
of the proposed technical implementation.

Each level of this hierarchy will be subject to various constraints. The
implementation may be subject to various organizational standards, have
to integrate with existing technology used to build surrounding systems
or the availability of key skills to support the chosen technology. Using
innovative new technology that requires non-existent skills or breaks any
technology constraints specified in the requirements process will quickly
lead to project failure. The greatest risk of project failure often arises
when information is transformed from one model representation and
reinterpreted in another. Each model should be validated and tested for
completeness to ensure that the derivation of further models does not
result in a flawed design or implementation. The risk in transforming
between different models can be reduced by using a coherent underlying
approach throughout all the models to simplify this transformation.
However, because this transformation is often a one-to-many
transformation (that is, requirements may be implemented in many
different ways), there is inherently a problem when requirements change
and what was once the optimal transformation will need to change.

PROTOTYPING

Often the precise requirements and technical challenges of a project can
be difficult to clarify. In these situations, a prototype can be developed
which is used to highlight, investigate or clarify key functionality or
technical issues that the project will have to address. It can serve as an
efficient means to communicate requirements between the project team
and the end users through a limited demonstration of actual function-
ality; for example by building screen prototypes to clarify how the user
could interact with the system. The focus is on being able to rapidly
modify the prototype rather than on robustness, performance or long-
term maintainability. Prototypes differ from iterative development in
that they will often only address certain aspects of the project that are
viewed as being uncertain or sources of project risk. Once this task has
been completed and any issues or risks clarified, the prototype should
be discarded and replaced with a fully engineered solution. Much of
the bad reputation that rapid prototyping has gained has been because

RISK MANAGEMENT TECHNOLOGY

100

the role of prototyping in the development process has not been fully
explained. Instead it has been treated more like iterative development
resulting in a deliverable solution.

BUY VERSUS BUILD

System delivery is often thought of in terms of the two extremes of either
building everything or, alternatively, buying a pre-existing package solu-
tion (Figure 4.5). Neither approach is particularly appealing, with each
suffering fairly major deficiencies, as outlined in Table 4.1.

One of the major problems with the product or package solution is
when the system is viewed as being of strategic importance to the organ-
ization, with unique requirements that differ from those of their competi-
tors. By purchasing a product solution, strategic control is given up to the
product vendor in return for a generic offering that anyone can purchase.
As a result, it is unlikely that the system will provide any clear competi-
tive advantage to the organization.

The significant costs in migrating data and processes from one system
to another can also act as a barrier to change, resulting in ‘vendor tie in’
where enhancements are dictated by the vendor’s upgrade schedule.
Once a vendor solution has been implemented it is often difficult to

101

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Figure 4.5 Buy versus build continuum

Customization

In-house

libraries Outsourced

development teams

Third party

librariesProduct-based

vendors
In-house

development teams

Toolkit, module and

component vendors

BuildBuy Build

RISK MANAGEMENT TECHNOLOGY

102

Table 4.1 Comparison of buy versus build

Approach Advantages Disadvantages

■ Tailored to exact
requirements

■ Incremental delivery and
phased migration

■ Interoperability and
integration with existing
systems

■ Can be customized to meet
future requirements

■ Strategic control of evolution
of system

■ Resource constraints if
developed in house

■ Long lead times

■ High levels of delivery risk

■ Low levels of reuse unless
there is an in-house reuse
strategy

■ Reduced return on
investment; everything may
need to be built

■ Ongoing support burden

■ Unproven solution until
implemented

Build

■ Rapid delivery of core
functionality

■ Vendor support and
maintenance

■ High levels of reuse and likely
lower cost of purchase

■ Proven in other deployments

■ Ability to review existing
deployments of the system

■ Limited resourcing
requirements compared to a
build approach

■ Proprietary to the vendor

■ Generic functionality and
approach which may not
adequately meet
requirements

■ Customization can be costly
or difficult

■ Support dependency

■ Integration can be difficult
and time consuming

■ Vendor tie in

■ Difficult to perform a phased
migration to new solution

■ Upgrades may not meet
future requirements

Buy

justify the cost and risk of moving away from the product. This can result
in strategic drift for the organization, with organizational capabilities
constrained by inappropriate technology and functionality. Taking the
product’s current code base and modifying it to match any precise
requirements can enable some vendor products to be customized. This,
however, means that the system will diverge from that developed by the

vendor, removing any benefits from future bug fixes and enhancements,
unless any changes applied to the customized version of the system are
reapplied to the future releases. If these changes are not trivial or local-
ized, this option can be an expensive and high-risk strategy. This risk can
be reduced by using well-defined public interfaces to the vendor system,
which support certain types of customization. If stable public interfaces
are not used, or available, these system customizations are unlikely to
continue to work as expected with future versions of the software. Even
if the above can be achieved, the ability to make these modifications also
relies on the product being well designed and documented so that it is
possible to make these changes easily and effectively.

Despite all these disadvantages, if proven functionality is required which
is generic and standardized, or if the requirements of the organization are
not well defined and there are no issues with modifying processes and
workflows to fit with the product, then a product approach can provide a
cost-effective solution. Because it is possible to view an existing demon-
strable solution, perceived risk can be reduced and limited to issues
concerning integration, rather than functionality. Integration costs should
not however be underestimated, especially for risk management solutions.

The main problem with building systems from scratch has been the
long lead times and costs associated with such approaches. The tech-
nology industry has constantly been trying to discover more efficient
development processes and approaches that enable greater levels of
reuse to be obtained, reducing both delivery times and development and
maintenance costs. Although the move to an object-orientated software
engineering paradigm2 was believed to be a major step towards this goal,
with its separation of implementation and functionality/interface, it has
not delivered all the benefits that had been hoped for. Typically reuse has
only been achieved through:

■ Small fine-grained objects or routines, encapsulated in software
libraries

■ Technical toolkits or infrastructure software used to develop full-scale
solutions (for example graphical interface toolkits, databases or
system connectivity tools)

■ Centralization of functionality in large monolithic or silo applications

■ Reuse of common algorithms, models and approaches

■ Reuse of common design, analysis and architectural approaches
through the use of patterns.

103

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Some of the greatest levels of reuse have come through the use of
patterns. These patterns found in design, architecture and analysis have
evolved over time into catalogues of simple and elegant approaches to
solving recurring themes inherent in certain types of problems. The
solution patterns aren’t always obvious but reflect the experience of
analysts,3 software designers4 and system architects5 gained over long
periods of time as they have worked towards greater levels of flexibility
and reuse within their solutions.

What has been absent has been the ability to achieve large levels of reuse
and the sharing of implemented common business functionality that
addresses actual organizational requirements in a mix and match approach.
The ideal would be to use common packaged functionality (where the func-
tional requirements permit this) so that resources can be concentrated on
what is unique to the organization rather than what is generic. Products are
increasingly being broken down into separate modules with well-defined
published interfaces so that data flows and functionality can be customized
and modified if required. From the other end of the continuum, the use of
component-based development (CBD) approaches is also resulting in
systems that are built using standalone, reusable components or services
that can be shared or redeployed in multiple systems.

CBD encourages a divide and conquer approach to software develop-
ment where the problem domain is broken down into a number of func-
tional (component) areas. Components are independently deployable
units of functionality that have explicit context dependencies and well-
defined interfaces and ways of interacting with other systems and
components that will not change.6

This middle ground between buy and build, of providing building
blocks for producing customized solutions, removes many of the disad-
vantages of a build solution but helps retain most of the advantages. This
results in solutions that can:

■ Be delivered rapidly

■ Have high levels of code reuse or utilize third party implemented
functionality

■ Provide customized solutions

■ Reduce project risk due to the greater use of prewritten and tested
functionality

■ Give significant productivity gains due to the high levels of reuse

■ Be designed to integrate and work with existing systems

RISK MANAGEMENT TECHNOLOGY

104

■ Be easier to maintain/evolve due to the breakdown of the system into
a number of independent units.

These solutions can be designed to meet changing requirements through
the property of replaceability (where existing functional components can
be replaced by new functional components provided that the interfaces
and contextual dependencies are maintained). Replaceability removes
the need to completely upgrade or replace systems when requirements
change. This approach also enables the trade-off between reuse and
customization to be assessed for each block of functionality, with greater
levels of customization reducing likely levels of reuse.

THE NEED FOR FORMALIZING PROCESSES

Given the chaotic and interrelated appearance of the software lifecycle, one
would be forgiven for asking why or whether this process should or can be
formalized. In his book on the economics of software engineering,7 Boehm
illustrates the relative cost of fixing errors arising or discovered at each
stage of the software development lifecycle. Although the specific costs
depend on the nature and complexity of the system, Boehm found that
costs increased significantly through the stages of the cycle, with an error
discovered at the implementation phase costing between 10 and 100 times
what it would have cost if it was uncovered at the analysis stage.

The aim must therefore be to implement a software process that
reduces the number and magnitude of the expensive errors discovered
later on in the process, but without adding so much overhead that the
additional process results in time delays and costs that would outweigh
these benefits. Again, this is a matter of risk and return; putting in place
enough process to reduce project risk, but not so much that it stifles inno-
vation and overly increases delivery times. The degree of process formal-
ization required will depend on the calibre of staff, the nature of the
problem and a number of other factors; capable, high quality, experi-
enced staff will be able to make up for process deficiencies. The difficulty
is in deciding where this level is (Figure 4.6). Some general characteristics
should be included in any software process that will:

■ Increase communication throughout the development team and with
the stakeholders

■ Provide a common language, approaches and techniques through
which all communication will occur

105

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

■ Clearly set out expectations and a process road map in order to
manage expectations and involvement

■ Provide clear controls to manage and mitigate risk within the devel-
opment process

■ Increase the completeness and efficiency of the entire process,
preventing ad hoc approaches to development and requirements
gathering

■ Manage change and problems throughout the software development
lifecycle.

The capability maturity model (or CMM) has emerged as an industry-
standard set of guidelines for evaluating and improving an organ-
ization’s software development process.8 CMM is a general descriptive
framework, which does not provide any specific guidance for implemen-
tation. Instead it provides a set of characteristics for different levels of
maturity in the software process which the organization should focus on
in order to elevate its software processes to that maturity level. CMM
defines five levels of maturity:

1. Initial
Ad hoc development processes relying on key individuals for
successful project completion.

RISK MANAGEMENT TECHNOLOGY

106

Figure 4.6 Trade-off between cost of process and cost of correcting defects

Level of Formalism

C
o

s
t Cost of Formal Process

Cost of errors

Total

2. Repeatable
Repeatable ability to plan, document and manage projects as well as
effectively track progress.

3. Defined
The development and management processes are documented,
standardized and integrated, with all projects using this approved
process.

4. Managed
More detailed and complex measurement and management of the
software process.

5. Optimizing
Continuous process improvement aimed at improving software quality.

The aim of CMM is to advance the software process within an organ-
ization from one that is characterized by a lower CMM level towards
one with a higher CMM level. This will lead to a process that is repeat-
able, managed and measured, improving software quality and reducing
software development costs. Independent assessment can be used to
validate and maintain a software process that meets a certain CMM
level. Organizations that have implemented CMM have seen dramatic
cost reductions and shorter times to delivery resulting from reduced
reworking and correction of software defects.9

The result of using formalized approaches should be a clearly defined
process, which will drive the software lifecycle and assist in the provision
of accurate time and effort estimates for project planning. A summary
and comparison of many of the different commercial methods for
analysing systems can be found in Tudor and Tudor’s work.10 The
precise methodology chosen will be context dependent, with each
methodology having its own strengths and weaknesses in dealing with
different types of problems; simple problems or small team sizes will not
be able to bear the burden of an excessively formal process, just as more
complex problems or larger teams will need some level of formalism if
the process is to be controlled.

AGILE METHODOLOGIES

Agile software methodologies are a hot topic in improving software
quality. They include methodologies such as XP,11 Scrum12 and Feature
Driven Development.13 Agile methodologies emphasize the importance

107

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

and role of people in the development process, highlighting their
importance over relying purely on process and tools. The benefits of
group problem-solving techniques and approaches have been well
known for some time, but the productivity and software quality benefits
of collaborative approaches such as pair programming14 can be amazingly
significant. In pair programming, two developers sit next to each other,
one writing the code and thinking tactically about implementing the
piece of functionality while the other considers how this fits in strategi-
cally with the overall design and reviews the code as it is written.
Jensen15 found an increase of over 100 per cent in the number of lines
written and a decrease in the error rate of three orders of magnitude.

Although these approaches have been most successfully applied in
ill-specified high risk projects where iterative approaches compensate for
ill-specified or changing requirements, rather than more formalized well-
defined traditional types of project, some of the concepts are transferable
to other types of project. The approach of agile methodologies can be
summed up in the agile methodology manifesto:

RISK MANAGEMENT TECHNOLOGY

108

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others
do it.Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin

Mike Beedle Jim Highsmith Steve Mellor

Arie van Bennekum Andrew Hunt Ken Schwaber

Alistair Cockburn Ron Jeffries Jeff Sutherland

Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

Source: http://www.agilemanifesto.org/. © 2001, the above authors.

Agile methodologies remind us that there is little point in blindly
enforcing procedures and documentation unless there are clearly

defined and achievable benefits. It again highlights the importance of
context and balance in any approach.

WHY SOFTWARE NEEDS TO BE REPLACED

Any system should be periodically reviewed to ensure that it is effectively
supporting business operations and not introducing unacceptable levels
of operational risk into the organization. If the system is not adequately
addressing the users’ needs, modifications should be made so that any
new requirements are met. Ideally, the process of augmenting function-
ality onto existing systems would result in ongoing enhancements that
could carry on for ever. Unfortunately, the process of modifying software
tends to add complexity to it as it is forced to operate in a manner that it
was not initially designed to do. This software entropy or software
disorder16 results in more and more complex code which is more difficult
and costly to maintain. It is also more likely to be incorrectly modified and
therefore more likely to fail, increasing operational risk.

Any developed system will have an initial level of entropy, which will
increase over its lifetime as changes are made. Eventually, the level of
entropy will be such that any further changes are too risky or expensive
to perform, requiring significant re-engineering of the software. The aim
of good software engineering is both to reduce the initial level of entropy
within the system and also to minimize the increase in entropy arising
from ongoing enhancements. This will increase the lifespan of the soft-
ware as well as reduce operational risk. The key question for the software
designer and developer is to determine any resultant savings and to
compare these against the costs of adding additional structure and
forward engineering in order to reduce both the initial entropy level and
the incremental increase from ongoing maintenance. CBD and other
modular approaches to software development address many of the
issues of software entropy by dividing systems up into smaller units that
can be individually re-engineered when required rather than requiring
the entire system to be re-engineered.

KEY ROLES IN THE SOFTWARE PROCESS

Within any project there are a number of key roles that should be filled,
each with its own unique responsibilities:

109

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Sponsor: The end user(s) or some approved representative of the end
user(s). This person defines, prioritizes and owns the relevant user needs
and requirements. They will also play a key role in validating that the
implementation meets the requirements.

Business analyst (BA): Responsible for interpreting, documenting and
representing the sponsor’s requirements to the rest of the development
team and mapping these into a requirements and analysis model.
They will be a key resource for transferring business knowledge and
interpretation of requirements to the developers as well as facilitating any
communication between them and the stakeholders. BAs should have
some knowledge of the proposed system design, so that they can clarify
any requirements, that may prove difficult or costly to implement. They
will also work with the test team to define functional tests.

Developer: Responsible for implementing the functional requirements.
This role will typically be performed by a number of different individuals
with the requisite skills to implement the defined functionality. This may
need expertise in graphical user interface (GUI) development, prototyping,
databases or third party packages. More senior developers will assist other
developers in understanding and completing individual tasks. They will
also act as a key control in the development process, and may provide
additional estimation expertise for input into the project plan as well as
ensuring unit tests are implemented and code reviews are performed.

Project manager (PM): Responsible for ensuring the overall aims of the
project are met. They will maintain the project plan, tracking and
managing progress (including taking remedial action), co-ordinate docu-
mentation and its review, and most importantly, report status to a
programme office or the key stakeholders of the project. The project
manager also has a key leadership role in instilling confidence, collabora-
tive spirit and discipline in the team.

Architect: Designs and oversees the overall system and application archi-
tecture and reviews design of all sections of the application to ensure that
they fit into any overall architectural strategy for the project and/or
organization.

Development lead: Manages and directs the entire development team.
He or she will also play a key role in resourcing and task scheduling, as
well as co-ordinating any review and quality control activities, such as

RISK MANAGEMENT TECHNOLOGY

110

enforcing relevant standards and guidelines. The development lead will
also work with the test team to co-ordinate any work required to repair
tests or sections of code, based on any test failures.

Configuration engineer: Manages the source code repository, the build
process and releases of the system (Chapter 9), as well as any supporting
tools used in the software development process.

System support staff: Maintain the non-people related resources for
the project.

Quality assurance lead (QA lead): Responsible for overall quality assur-
ance, not just quality assessment or testing, as well as managing the
quality aspects of the development process and ensuring adherence to
any defined development process. The QA lead will work with other
roles in the project to ensure that an adequate testing framework is put in
place to support these aims.

Test designer: Responsible for ensuring that adequate testing is
performed on any builds and releases of the system. If the testing process
is not automated, the test designer may also be supported by testers who
perform these tests.

At the overall project or programme office level there may be
senior representatives from the roles outlined above who will perform
co-ordination activities in addition to the overall programme manager
who will co-ordinate all the individual project plans. A help system
designer, technical author or other documentation provider may also
be needed. Outside the project there may also be similar roles for
co-ordinating reuse, development process and architectural standards
across the organization.

Many of these roles may be performed by a single individual or
shared among a number of individuals, depending on the size and
complexity of the project. Conflicts of interest in performing multiple
roles should be avoided, such as a developer also having responsibility
for quality assurance. The transparency, communication and workload
implications of the distribution of these roles across the team should be
carefully monitored and managed through the project plan and project
management process. Absence of any of these roles, however, will
indicate an incomplete software development process, increasing the
likelihood of project failure.

111

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Although experience and specialist knowledge are important require-
ments for certain tasks, within any project it is important that these
resources are used as partners and expert helpers rather than key indiv-
iduals vital to the success of any project. Viewing individuals as key to
project success will only end up in them becoming bottlenecks to the
development and review process.

TEAM-BASED DEVELOPMENT

Communication is key to ensuring that there are no misunderstandings
in the implementation of functionality. If project members with different
skills operate independently of each other, only communicating on an
occasional basis, there will be a tendency for barriers to build between
them. The aim must be to break down these barriers in order to bring
people from different functional silos into an integrated process.
Constant ongoing communication and sharing of information will
resolve the many interrelated issues that will arise in implementing risk
management functionality. The classic approach of having one func-
tional group ‘throw’ work over the wall to the next downstream group
(Figure 4.7) can give everyone a false impression of progress; the former
group will appear to have done their work (and will probably have
started working on new tasks) while the next group appear to take

RISK MANAGEMENT TECHNOLOGY

112

Figure 4.7 Avoiding the barriers to team communication

longer to complete their tasks because they have to resolve issues or
inconsistencies arising from the received information. Without adequate
contracts between teams, for example, between BAs and developers in
the form of properly structured documentation and frequent review
meetings, developers will, at best, be chasing requirements whilst the
details are finalized. At worst, significant delays to the deliverables of
any tasks may occur.

Cross-functional teams address this communication issue and
comprise staff covering all the roles mentioned above. Each multi-
skilled team comes into being for the sole purpose of carrying out the
assigned body of work. Once that work is completed the team can
disband and be made available for other work. By including represen-
tatives from all the different roles, the process becomes much more
transparent, and easier to manage, especially as the drivers and sources
of project risk are likely to be distributed across the different functional
areas. This will ensure that the causes of risk and the realization of
those risks are combined into a single manageable unit. Communica-
tion also becomes much more robust and durable, which helps to
ensure that what is implemented is what was requested and for this to
be achieved on the first attempt at delivering the functionality. Cross-
functional teams do however add different risks to a project in terms of
co-ordination and resource management.

As well as being cross-functional, teams may also be distributed in
multiple locations. This may be because of constraints on resource avail-
ability or in order to provide improved (global) around the clock support
and development. Ensuring a local presence to the users of a system will
also help to guarantee that adequate front line support is maintained and
any user relationships are more effectively managed.

Resource constraints can arise from the location of key skills within
the organization or, alternatively, be due to the cost and availability of
skills in the external employment market. This has led to a major drive
towards outsourcing development to regions such as India or China
where there is a large, low cost, highly skilled technical skill pool.
Productivity can also be enhanced by performing sequential tasks on a
constant global basis. For example, a daily testing and validation process
run in Asia can follow development in Europe, with this information
available for the development team on the following day. Global teams
also tend to involve people from more diverse backgrounds ensuring
balanced teams that have fewer cognitive biases and a lower danger of
‘group think’ where all the members of a team convince themselves they
are correct rather than questioning their assumptions.17

113

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

The soft or people aspects of software development require some level
of face-to-face communication and interaction in order to build trust and
rapport between team members. This can be an issue with global teams
and takes significant amounts of time to develop using less interactive
approaches such as email; the more interactive the medium the better.
A common approach to improving team communication and coherence is
to arrange a project kick-off meeting in a single location. This enables the
team to form and develop as a group as early as possible, ensuring the
entire team is involved. It also provides a sense of ownership of the project
from the outset. Good communication is key in any project and the
informal meetings that improve information flow, which may occur by the
coffee machine in single site projects, will be more difficult to achieve on
global projects. Ensuring that frequent discussions occur, are documented,
agreed and any outcomes are distributed to the project team will address
this deficiency. Some of the key requirements for team performance are:

Trust
Both the stakeholders and project team must trust and empower each
other in achieving a common well-defined goal. Developers must trust
and be willing to help one another in every way possible to achieve that
goal. The management team must trust that each developer is a skilled
professional who will perform to the best of his or her ability and make
the best decision given the information available.

Courage
The team must not be afraid to restructure or redevelop aspects of the
system when the situation clearly warrants it. This decision must be made
carefully with input from all relevant parties. In the long run, brave
decisions will dramatically reduce issues later in the project that other team
members may have had to address. There is always a tendency, when the
time pressure is on, to attempt a quick fix that can increase code complexity
and reduce maintainability.

Confidence
To know what is right and implement it with conviction. Many issues arise
from uncertainty and indecision in implementing functionality. Incorrect
decisions can always be resolved later. Procrastinating will achieve nothing.

Discipline
Any defined process and related tasks, such as testing or maintaining
documentation, must be performed, even if the modifications are only

RISK MANAGEMENT TECHNOLOGY

114

a ‘one line change’. Failure to be disciplined will remove the benefits of
any defined approach.

Focus
Time should not be wasted on functionality that is not required. The
‘20/80 rule’18 tells us that 80 per cent of the useful functionality of a
system comes from 20 per cent of the total effort of a project; this is where
any focus should be.

Truthfulness
To ensure effective communication and enable the project to be effec-
tively managed, correct information on progress and project status must
always be provided by all team members.

DOCUMENTATION OF THE PROJECT

Documentation provides a lasting record of the development of the system
and forces the development team to make explicit all implicit assumptions.
This can then be used as a checkpoint in the team’s understanding of the
project that is formally ‘signed off’ and agreed by all interested parties.
Ensuring that there is an effective requirements management process and
that the entire process is documented is a key requirement in achieving
CMM level 2. Sign-off procedures also formalize and ensure responsibility
and accountability for producing documentation that is correct. This is
important at the requirements gathering stage, as the functionality of the
developed system will depend on the specified requirements, which
should have been validated against the actual requirements.

The documentation of a project will range from requirements to actual
implemented code and test cases. It may also include emails, notes, and
recordings of conversations that provide the context for information or
changes. Ideally, any documentation process will have the ability to link
design, code or test cases back to specific requirements (and vice versa)
and even back to individual conversations and decisions. This ability to
recall the history of any project output (or artefact) in the project is known
as traceability. Traceability provides a context for any decision to be fully
understood at a later date, as well as ensuring that the full impact of any
change on previous decisions is completely understood before being
made. This can be vital for large projects or systems that are likely to
undergo major enhancement throughout their life.

115

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Requirements and documentation will change through time. The
concept of the requirements being frozen as of some point and
remaining frozen does not match reality and can only lead to the
successful delivery of the wrong solution. Traceability requires us to be
able to track changes in documentation over time, linked to the new
information that caused that change to occur. It should also be possible
to view the documentation as of some defined point (the baselines or
snapshots which will be the basis of the requirements for the system
being built at that moment in time) along with the changes that occur
between each snapshot. The evolutionary nature of information gath-
ering also means that it will be necessary to associate various states
against all the artefacts produced by the software process. This will
typically include initial release, under review, reviewed and final, with
these states being iterated over as changes impact the system. Keeping
these artefacts consistent and synchronized between different versions
is a major challenge for the development process and can introduce a
significant burden on the project. Significant risks may, however, arise
if consistency is not maintained, leading to tests or code not reflecting
current requirements.

Ideally, documentation should be based on standard templates, used
across all projects so that there is:

■ An element of familiarity when using any of the documentation, with
a common consistency, look and feel

■ A focus on content rather than layout when the document is
authored

■ A checklist of content laid out by the template that must be filled in.

Care should also be taken to avoid combining too much information
into a single document. Conflicts and problems can arise when multiple
people work on the same document, which can introduce unwanted
dependencies into the process. Often a project workbook is created,19

which acts as a repository for all this information. This document
provides a list of all the output from the project, in effect, a project-
specific customization of the general process, outlining precisely what
is to be delivered within the project. The project team members should
agree on the types of artefacts that are needed based on the nature of
the work being carried out. The project workbook can also be used to
maintain the project contact list, billing and timesheet codes, and the
like. If all artefacts are hosted online, the project workbook can be used

RISK MANAGEMENT TECHNOLOGY

116

as a portal homepage, using hyperlinks to point to the relevant arte-
facts. The use of a document management system can help automate
and remove many of the problems associated with tracking changes,
versioning documentation, managing state change and improving
traceability. The following section highlights the range of potential
documentation.

Project proposal

This will be concise, non-technical and authored by the project stake-
holders. It defines the scope and purpose of the project and should also
clearly articulate the business reasons and benefits from performing
this project.

Requirements

Authored by the BA, this will define the precise requirements for the
system and form the basis of a requirements model, which should
provide enough detail for the test team to develop various system and
acceptance tests. This requirements model may detail specific business,
customer and operational models that have been proposed or need to be
supported.

Functional analysis

This document takes the requirements and transforms them into an
analysis model that will meet these requirements. This model should be
defined in enough detail for the development team to be able to respond
with a corresponding technical design and implementation strategy.

Design, implementation and architecture documents

Authored by the development team (architects, developers), these
documents describe the design and implementation details, derived
from the results of any analysis. They will describe how the system,
other systems and units of software will interact to satisfy the require-
ments and how various infrastructure issues will be addressed. These

117

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

documents should also detail the relevant physical data and process
flows and how these relate to the physical infrastructure.

Test documentation

The test documentation should consist of:

Test plan
This will set out the plan, objectives and approach for testing the system.
It will also define the testing environments and resources that will be
required, the test results review process and how this information will be
used throughout the rest of the project.

Test cases
This will define the types and range of testing that will be performed,
deriving individual test cases from the functional requirements, analysis
and implementation documentation, depending on the type of testing to
be performed. These should be fully traceable back to the artefact that
resulted in the test case.

Test procedures
Details of how and when the tests will be performed and any tools that
will be required.

Test results
Record of the results of testing and how this information will be reported
to the project team.

Standards, project procedures and style guides

The processes and tools to be used within the project should be fully
documented. This should also cover all procedures to be implemented
with the project, including tasks that should be performed at various
stages of the development process concerning quality assurance, esti-
mation approaches, risk assessment, management and so on. When a
number of developers work on or are likely to maintain pieces of code,
it is important to define screen layout, coding standards and style
guides that any work should adhere to. Unless this is achieved, the
look and feel, structure and usability of the application are likely to be

RISK MANAGEMENT TECHNOLOGY

118

inconsistent. The international deployment of risk management solu-
tions also means that the code should be ‘internationalized’ requiring
the GUI to be customized to the locale it is used in. This documenta-
tion should also highlight any reoccurring design patterns that should
be standardized and defined as part of any design standards.

Project plan and project process

The project plan will define all the detailed tasks, resources, pending
issues required to deliver the system, together with estimated and
actual task completion dates. The skeleton outline should be common
to all projects and, in effect, document the process in terms of pre-
defined tasks, deliverables, task orderings and completion milestones
(Chapter 7). The plan should always reflect and maintain current esti-
mated and actual completion times for each task.

Change control plan and requests

The procedure for dealing with and prioritizing changes to the require-
ments must be agreed with all the project stakeholders and the process
documented. Because these requests will change the requirements of the
system, they must be fully documented and traceable to changes in the
requirements document.

User and support documentation

Depending on the requirements of the users, various amounts of docu-
mentation or training materials and courses may be required. The type
of information to be provided will depend on the characteristics of the
user group. Traders are unlikely to attend extensive training courses or
read manuals and will instead require targeted individual tuition. Risk
managers will be more amenable to group training and training
manuals.

User documentation may also include installation notes, support
notes, release documentation, checklists, sign-off forms and other mate-
rial relating to the installation or use of the system.

119

THE SOFTWARE
DEVELOPMENT L IFECYCLE

ch
ap

te
r

fo
ur

Notes

1 P. Krutchen, The Rational Unified Process: an Introduction (Addison-Wesley, 1999)
2 I. Jacobson Object-orientated Software Engineering – A Use Case Driven Approach

(Addison-Wesley, 1992)
3 M. Fowler, Analysis Patterns: Reusable Object Models (Addison-Wesley, 1996)
4 E. Gamma, R. Helm et al. Design Patterns: Elements of Reusable Object-oriented

Software (Addison-Wesley, 1994)
5 M. Fowler, Patterns of Enterprise Application Architecture (Addison Wesley, 2002)
6 C. Szyperski, Component Software – Beyond Object-orientated Programming

(Addison-Wesley, 1999)
7 B. W. Boehm, Software Engineering Economics (Prentice Hall, 1981)
8 P. Jalote, CMM in Practice: Processes for Software Development at Infosystems

(Addison-Wesley 1999)
9 W. Humphrey, T. Snyder and R. Willis, ‘Software process improvement at Hughes

Aircraft’, IEEE Software, 8 (4) July 1991, 11–23
10 D. J. Tudor and I. J. Tudor System, Analysis and Design – A Comparison of Structured

Methods (Macmillan, 1997)
11 K. Beck, Extreme Programming Explained (Addison-Wesley, 2000)
12 M. Beedle and K. Schwaber, Agile Software Development with Scrum (Prentice Hall,

2002)
13 S. Palmer and M. Felsing, Practical Guide to Feature-driven Development, (Prentice

Hall, 2002)
14 See note 11
15 R. Jensen, ‘A pair programming experience’, Cross Talk – The Journal of Defence

Software Engineering (March 2003)
16 See note 2
17 G. Salaman and J. Butler, ‘Why managers won’t learn’, in Managing Learning,

C. Mabey and P. Iles (eds) (Routledge, 1994) 34–42
18 See note 11
19 IBM, Object Orientated Technology Center, Developing Object-orientated Software –

An Experience-based Approach (Prentice Hall, 1997)

RISK MANAGEMENT TECHNOLOGY

120

121

CHAPTER 5

Requirements
gathering and analysis

Before the formal start of any requirements gathering and analysis,
there should have already been a reasonable amount of informal
requirements gathering and problem scoping through the production of
a project proposal or business justification statement. This may have
even resulted in an initial feasibility study or the building of a proto-
type. The justification statement will be the basis for all further project
work and will provide the high-level objectives to be achieved and the
context of the problem to be solved. This statement will have consid-
ered both internal and external events and the drivers that are forcing
change on the process under discussion.

The project proposal will typically be a descriptive document that
highlights the key issue that needs to be addressed. It should not
specify how this problem should be solved and may not even clearly
define the problem beyond indicating that existing processes and
systems are unable to address the organization’s needs. Its main
purpose is to acknowledge that senior staff within the organization
understand that there is a problem to address. This problem may have
arisen due to an alarming increase in certain KRIs that highlight
an inability to measure and manage risk or potential failures in the
workflow or processes such as:

■ Poor levels of data consistency

■ Transactions not recorded in systems

■ Incorrect measurement of risk

■ Difficulties in ensuring data quality

■ Inability to support the future business strategy, in terms of financial
instruments traded, the way in which they are managed or the
volumes traded.

Any project proposal should highlight all the evidence that supports
its assertions, and any constraints (such as delivery dates or costs) that
must be met. The aim of articulating the nature of the problem and why
it must be addressed helps to ensure that the stated assumptions are in
agreement with organizational strategy.

In order for the project to occur, this initial assessment must have been
able at least to show that further analysis should be performed. This will
enable any issues to be more precisely specified and determined, as well
as leading to a list of possible options and requirements for a system to
resolve these issues. Once the problem is better understood, some level of
cost and risk can be associated with each proposed solution, and any
additional or specific benefits that will result. The organization can then
make an informed decision whether to proceed with the project and what
the scope of the project should be.

The importance of some level of initial project proposal or business
justification cannot be overstated. Its absence will often indicate a project
that has no clear sponsor, no allocated budget and which may not be
aligned with the organization’s strategic needs. This will make the
project likely to fail, becoming either incapable of addressing the organ-
ization’s true needs or unachievable within it. When defining the require-
ments for any solution, the best approach to obtaining these will be
highly context specific, depending on the unique nature of any organiza-
tional issues and the attitude and influence of various groups involved.

RE-ENGINEERING WORKFLOW AND TECHNOLOGY

There are very few ‘green field’ sites where the business analyst simply
needs to specify a new solution that meets the users’ requirements, which
can be implemented using whatever is the most appropriate technology.
Dependencies on existing systems and workflows greatly complicate this
process. Instead, a constrained, ill-specified optimization problem often

RISK MANAGEMENT SYSTEMS

122

arises; existing workflows and technology must be enhanced so as to
meet the new requirements within the context of organizational stan-
dards and competing demands for resources. Understanding the existing
technology and the users’ interaction with it is key to bridging the func-
tionality gap and implementing any new required functionality and
workflows (Figure 5.1). Only by understanding the existing functionality,
its associated workflows and technology, as well as future requirements
is it possible to:

■ Ensure that any new system enhances rather than subtracts from
existing functionality

■ Minimize project risk by fully understanding current and future
requirements, the gap between them that must be bridged and why
this must be achieved

■ Provide enough contextual information for the development team to
be able to assess the most efficient approach, given the risk appetite for
the project. Any new implementation should work with rather than
against, or ignoring, existing processes and technology.

123

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

Figure 5.1 Software bridging the functionality gap

Processes,

workflow and

technology

Current

Processes,

workflow and

technology

Required

Functionality and

Process gap

Software and process

re-engineering

This is a very similar problem to using a map to plan travel between two
locations. Although the destination may be known, without being aware
of where you currently are it is impossible to know the most appropriate
manner in which to reach it.

It is rare for the implementation of any new system only to require
technological changes within the organization. Often requirements have
much wider reaching implications, necessitating the re-engineering of
workflows and other systems that interact or are outside the proposed
scope of the project; not all problems can be solved through technology
alone or can be localized to a single piece of functionality! These organ-
izational and operational changes are as important as the new function-
ality being delivered. If they are not implemented, any proposed solution
will not integrate with the surrounding processes and technology. As
a result the project is likely to fail.

Process change can be difficult to achieve. It requires a holistic
perspective that challenges the current way work is performed. It may
even impact the culture of the organization and the way certain
behaviours are rewarded. Such changes can be exceptionally difficult
to implement and must be clearly communicated to the sponsors of
any project.

The business analyst should not only be gathering requirements from
the users but also considering what additional changes may be required
in surrounding processes and systems. To achieve this, the analyst must
look for deficiencies in and implications of existing and proposed
processes. These deficiencies may impact the quality of risk information,
increase operational risk or reduce operational efficiency within the
organization. Any proposed solution should aim to:

■ Enhance existing workflow and processes – automate rather than
obliterate

■ Manage the trade-off between functional requirements and cost in
terms of money and time – nothing is for free

■ Produce solutions that are designed to automate and integrate – end
error-prone multiple data entry and excessively manual tasks

■ Standardize models and approaches through shared functionality and
approaches – solve the reconciliation nightmare.

RISK MANAGEMENT SYSTEMS

124

REQUIREMENTS GATHERING

The aim of requirements gathering is to obtain an agreed understanding
between the stakeholders and the project team of what any proposed
project should achieve. This should define the functionality that will be
provided, but not necessarily how this will be achieved. Constant
ongoing communication and confirmation of the requirements with these
stakeholders is vital to the success of any project.

The requirements document is key to defining the rest of the work to
be performed in the project. In particular it will define what will be
implemented and how it will be tested, together with the defined sign-off
criteria. Any errors or misunderstandings at this stage will therefore
propagate throughout the rest of the project.

In order to ensure the success of this stage of the project and the
commitment of all those involved in this process, it is advisable to have
some type of ‘kick off’ meeting. This should be attended by the sponsor
and clearly articulate the:

■ Reason for this work

■ Benefits the project will bring

■ Influence those attending the meeting can have on the project and why
their involvement is important.

One of the key challenges for the analyst is to avoid thinking in terms
of a concrete implementation. This is also true for the users of the
proposed system, who may be more comfortable thinking in terms of
specific physical implementations of systems that they are familiar with
or how any solution could be implemented in a spreadsheet. Instead, all
discussions must be in terms of requirements that can be converted into
logical or conceptual processes that address these requirements. The
system architect and lead developer then decide how these logical
processes should be implemented to deliver both the functional and the
behavioural characteristics of the system.

The process of requirements gathering can be broken down into
a number of distinct stages (Figure 5.2):

Problem discovery
Ensuring the problem is well specified and understood at a conceptual
level. The underlying causes of the problem must also be well under-

125

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

stood so that any solution will address these and be able to cope with
likely short-term changes.

Analysing the current context of the problem
Understanding the existing workflow, technology and processes as well
as why and where they are deficient. This will also drive the strategy for
delivering and deploying any solution.

Specifying new requirements
Specifying and prioritizing the new requirements in sufficient detail to
fully address the needs of the business and define the completion criteria
for the project.

The requirements gathering process should be fully documented and
cover not only functional issues but also any other project-related
constraints. These constraints may include available budget, delivery
deadlines and other organizational or technical limitations and assump-
tions. By making these explicit as early on in the process as possible,
major misunderstandings can be prevented.

RISK MANAGEMENT SYSTEMS

126

Figure 5.2 Process for system change and requirements gathering

Stakeholders

Current

system

Currently met

functional

requirements

New

functional

requirements
Problem

discovery

External system

and operational

(workflow) changes

New system

Politics and budgets

Before gathering any information concerning the requirements, aware-
ness and commitment to the project must be obtained. This should
include identifying the key users, roles and responsibilities of all those
who will be affected or will have influence on this project. This will cover
all users:

■ Involved in the workflow to be modified

■ Who support current processes or system

■ Who operate in related areas that produce or consume information
related to the processes to be modified

■ Who comprise groups involved in the setting, defining or implem-
entation of standards or controls, such as architecture groups or
internal audit.

One vital outcome of this process is to identify the key sponsor of the
project. This user must be influential enough to ensure commitment
from all the parties involved in the process and will also have owner-
ship of the budget allocated to the project. Within any organization
resources are, to varying degrees, always constrained and opinion and
commitment of various stakeholders may not always be as supportive
as hoped for. Many projects will be competing for these scarce resources
both in terms of budget and key staff, and those who have influence
over these must be convinced that this project is worth supporting.
Unfortunately this process is not a completely rational one. At best it is
subjectively rational,1 that is, rational to the decision makers given their
experiences and available information, even if these decisions appear
irrational to others. At worst, personal agendas and political relation-
ships may result in sub-optimal (to the organization) decision making.
It is therefore important that any project manager is prepared and
armed to deal with this and that:

■ The goals and solution are clearly articulated

■ Details and benefits of the proposed solution are clearly communicated

■ Any goals agree with the company strategy and the personal goals of
the key decision makers

■ The project works within and adheres to any constraints imposed by
the organization or those involved in the decision process.

127

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

People, as well as financial organizations, have different risk toler-
ances, approaches for comparing risk (of project failure) versus return
(benefit from project) and timescales (short-term career benefit versus
long-term organizational survival). The participants and stakeholders in
any project (whether at the proposal, ongoing development, or mainte-
nance stage) can be broken down into different groups depending on
their influence and attitude to the project (Figure 5.3). The influence that
someone has is typically broken down into a number of categories that
will include:

Decision maker
This is the person or group that will fundamentally make the decision
and allocate budget. As a result these people have a high level of influ-
ence on whether the project goes ahead or continues.

Influencer
This group does not have decision-making powers but can influence
those with them.

RISK MANAGEMENT SYSTEMS

128

Figure 5.3 The attitude and influence matrix
of those involved in a project

A
tt

it
u

d
e

High

Neutral

Low Medium

For

Against

Influence

Recommender
This group does not make or assess project decisions but can increase the
visibility of a project to those with greater influence.

Specialist/Evaluator
Specialists have one-sided influence in that they can only reject
proposals, setting a bar above which all projects must be able to climb.
Their ability to influence is based on their knowledge of the underlying
technical or business details. It is therefore important that those in this
group are adequately informed. They may also be influencers, based on
their expert knowledge and opinion.

Gatekeeper
Gatekeepers control access to other groups, restricting and controlling
information flow. They can even distort information, resulting in an
incorrect representation of the project to others.

End user
This is the group who will use any proposed system and will drive
certain aspects of the requirements process.

Resource or budget allocator
This group controls the allocation of resources and budget to the project
or decision maker. As a result, these people have the option of with-
holding or removing resources, preventing the project from starting or
effectively continuing.

One of the key challenges is mapping out those involved in the
process onto the influence and attitude matrix (Figure 5.3). It is then
important to inform, influence and argue the benefits of the project
so that those with high levels of influence do not become negative to
the project and those that are against the project come to support it.
The relative importance and role of these users will change over time
and it is important to remap the matrix during the different stages
of any project. Influence diagrams can also be used to map the com-
plicated interdependence and influence of different groups within
this process in order to understand how views and decisions can
be changed.

It may be possible to modify those involved in the project, so that
groups who were perceived to have low influence and support the

129

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

project increase their influence. For example, internal auditors can
become key influencers in a project when informed of the unsatisfactory
alternatives. They can become strong allies to projects that will deliver
key controls within the organization, as well as support the required risk
management functionality.

Problem discovery

Often the root cause of a problem is not clear and its precise nature needs
to be determined. Each interested party will have a unique, but incom-
plete perspective on the problem, in the same way that a group of people
using binoculars to look at an object have. They each see the detail within
their field of view but often cannot grasp the context and wider problem
represented by the entire object being viewed. This is the essence of
problem discovery and the role of the analyst in producing a coherent
model that represents all these requirements. Fortunately there is a wide
range of creative techniques that can be applied in order to discover the
true underlying nature of a problem.2

At the heart of problem discovery is the use of different thought
processes and approaches to thinking about the problem in a divergent
and then convergent manner (Figure 5.4). This process is then iterated

RISK MANAGEMENT SYSTEMS

130

Figure 5.4 Convergent and divergent
approaches to problem solving

D
iv

er
g
en

ce

C
o
n
v
erg

en
ce

o

b

l

e

m

d

i

s

c

o

v

e

r

y

D
iv

er
g
en

ce

C
o
n
v
erg

en
ce

o

b

l

e

m

d

i

s

c

o

v

e

r

y

Problem

Statement

P

r
P

r

131

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

until the problem is well understood. Divergent approaches encourage
many different perspectives on the problem, encouraging people to
‘think outside the box’, challenge accepted understandings and consider
different requirements to address any issues. This process is important if
the problem is to be well understood and to ensure the quality of the
proposed requirements of any solution.

On their own, divergent approaches do not follow through into
concrete proposals, but instead lead to a list of possibilities. As a result,
every divergent phase must be associated with a convergent phase,
where different requirements that address the problem are evaluated and
the best approach selected.

Current processes

Analysing the current processes and technology requires the analyst to
perform the reverse operation of the typical development process. That
is, to derive the logical model for the system from its current physical
implementation (Figure 5.5). This requires deriving the design model

Figure 5.5 The system reverse engineering process

PhysicalPhysical Implementation

Design Model

Analysis Model Logical

from the physical implementation, and from that, deriving the analysis
model. Unless the system is well documented, this can be a time-
consuming process. It is also one that should not dominate the time and
budget assigned to the entire project! Once a physical model representing
the implemented processes, work and data flows has been derived, it can
be validated against the current implementation through discussion with
the users and current workflows. The logical model will not be as easy to
validate. It will require the removal of certain implementation details
such as data replication, regrouping of processes and the paring down of
data flows and data representations to those that are relevant to a given
aspect of the supported functionality being analysed.

Determining requirements

The process of gathering requirements needs an understanding of the
problem domain and the performing of various preparatory work before
engaging in any information gathering, as previously discussed. Gath-
ering requirements is an iterative process (Figure 5.6), repeated until a
consistent and agreed understanding is achieved with all the stake-
holders. There are many techniques that can be used to extract infor-

RISK MANAGEMENT SYSTEMS

132

Figure 5.6 User interaction for requirements gathering

Analysis

Execute

project

Problem-

specific

preparation

Communicate

results and
actions

Review

Feedback
Information

gathering

Requirements

Gathering

Understanding

of risk

management

mation concerning the requirements, each with its own time demands
and efficiency characteristics. The most common approaches are:

Review of any current documentation relevant to the project
This may include any standards documents, regulatory documentation,
existing system or process documentation, loss database information or
audit reports highlighting system deficiencies.

Interviews or workshops
Interviews can be held on either a one to one or a group basis
depending on the likely level of input from the interviewee(s). The key
stakeholders to be interviewed will be the sponsor and other major or
influential users (either directly or indirectly) of the system. The
sponsor will be able to give a strategic view of the organization’s
current status, constraints, priorities and strategy. In a contextual sense,
the sponsor should also be aware of any specific issues relating to areas
or individuals to be interviewed. The proposed users of the system will
then be able to provide a link between the sponsor’s vision and their
knowledge of the capabilities and constraints of their own business
areas and skill sets. These users may also recommend others who
should be interviewed or involved in process shadowing. In order to
encourage consistency and pragmatism, these interviews may be in
groups with a key stakeholder also attending to ensure commitment to
the process.

Process shadowing
Watching and documenting the existing process to ensure all major
issues and requirements have been highlighted and correctly defined.

Questionnaires
These are often used in collaboration with interviews or process sha-
dowing. When business analysts are trying to uncover as much infor-
mation concerning the requirements as possible they should use ‘open’
questions. These are questions that invite additional clarification and
comment from the user (rather than a yes or no response). When defining
or trying to limit scope later on within the process, ‘closed’ questions
inviting yes or no answers may be used.

The requirements gathering process highlights the communication
gap between users and the project team. Users will often state require-
ments verbally in face-to-face interviews and process descriptions

133

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

through the above processes. The analyst must interpret and convert
these requirements into an unambiguous and sufficiently detailed
description of the problem to be addressed that can eventually be imple-
mented. Often no individual user will know the total functionality and
detailed requirements of any system. Instead, more detailed specifica-
tions and definitions will need to be provided by specialist groups or
other users involved in the trading or risk operation.

The goal of gathering requirements is to extract as complete a view of
the problem as possible, from as many different perspectives as possible.
Care must be taken that this process does not degenerate into a whining
session that highlights issues outside the current scope of the project.
Although these issues may be important and need to be communicated to
other groups within the organization, it is important to retain focus on
what the particular project is trying to address. Projects that try to address
all potential issues and problems within the organization will result in an
endless expanding discussion of scope. This entire requirements gath-
ering process should be managed through the project plan, with clearly
defined deliverables and deadlines for completion of the work.

Benchmarking and gap analysis

Any analysis and requirements gathering phase will involve a level of
benchmarking or gap analysis. Often benchmarking is performed
subconsciously in that users compare current capabilities with their
previous experiences or expectations. Formalizing this process and
comparing current functionality and processes against those of other
successful organizations or systems provided by third party vendors can
highlight the deficiencies of the current process. It will indicate what
functionality should and should not be included in any proposed solu-
tion. This can be taken to its natural conclusion of determining the ideal
solution, even if its contradictory requirements or complexity mean that
it could never be achieved. It will still act as a benchmark against which
to assess possible solutions.

The business analyst can obtain user requirements by phrasing
questions in one of two ways, which will require making a comparison
with either the current system or some ideal set of functionality:

■ What is it that the current system doesn’t do, or doesn’t do well, that
you need to do, or do more efficiently?

■ What should the new system be capable of doing?

RISK MANAGEMENT SYSTEMS

134

The danger of basing the requirements on an idealized functionality
list is that the requirements can end up being an endless wish list. This
list will typically be too time consuming and expensive to implement and
as a result will require closer scope control and prioritization. The
outcome of the benchmarking process should be a list of requirements
that indicate the gap between current and required functionality. Addi-
tional information should also be provided that will assist the analyst in
categorizing and prioritizing these requirements:

■ Required functionality

■ Reality of current process

■ Gap between requirement and current process

■ Benefit from closing this gap

■ Cost of closing this gap

■ Risks in closing and not closing this gap

■ Priority of this requirement

■ Dependencies on other projects or internal functionality

Hierarchy of business requirements

Requirements gathering is best performed in a hierarchical top-down
fashion. At the highest level will be initial discussions with key stake-
holders, setting overall project scope, and at the lowest level,
process and calculation definitions of sufficient detail to be transformed
into a detailed proposed logical design (Figure 5.7). This design must be
able to address all the specified requirements and be sufficiently
defined for a development team to unambiguously implement it.

Initial requirements gathering should focus on a high-level descrip-
tion and overview of the functionality that must be provided by any
solution. It should define what requirements are in scope and which
are out of scope. Any potential requirements that are noted as being
neither in nor out of scope will add uncertainty and risk into the
project. They should be clarified as early in the process as possible, and
should lead to the analyst being able to draw a context diagram for the
proposed project.3 This context diagram will indicate which desired
high-level functionality or current systems are within the scope of the
project and which are not. Functionality and systems that are outside

135

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

the scope of the project will need to be integrated with, whereas
existing system functionality within the context diagram may need to
be replaced, enhanced or utilized in a different manner.

The requirements gathering process will need to produce a precise
definition of external interfaces, screens and any calculations or data
transformations that need to be performed. It is only by specifying
these requirements to a sufficient level of detail that the scope of
the project can be controlled. The outcome of this process should be
sufficient information for a detailed analysis and project plan, with
reasonably precise estimates, to be produced.

The phrase that a picture paints a thousand words should not be
underestimated. Although it is appropriate to use high-level written
descriptions for overall requirements, many problems arise from
verbose textual descriptions of detailed required functionality (Table
5.1). Language is inherently imprecise and ambiguous and so the
analyst should always aim to reduce these detailed requirements down
to easy-to-understand diagrammatic or tabular representations. The
process of listing behaviour in response to user inputs or other system

RISK MANAGEMENT SYSTEMS

136

Figure 5.7 Hierarchy of requirements gathering

Obtain budget

Define high-level requirements

Initial scope and context

Overview document

Context diagram Clarify and define context

External interfaces

Workflows

Screens

Inputs/Outputs

Detailed specification (diagrams, tables

and so on)

Functionality

workflow

events also helps to ensure completeness of defined behaviour. It is
much easier to note a missing condition in a table or list than
in the middle of a page of text. Textual descriptions also make it diffi-
cult to determine how requirements have evolved over time.
Comparing the differences between pieces of text not only shows
changes in the underlying semantics of the text but also syntactic
changes arising from grammatical restructuring.

Because the requirements gathering process is concerned with
defining what issues any proposed solution must address, rather than
how this may be achieved, it should focus on external interactions with
the proposed system. This will cover any interfaces to other systems as
well as user interaction through GUIs. These interactions are usually
broken down into what information should be persisted, what aspects of
the functionality should be defaulted and how any interaction should
occur (Figure 5.8). More precisely the aim is to define, for the system as a
whole addressing some required user workflow or external system inter-
action, the:

Goal of the interaction

■ What is the purpose or aim of this workflow or interaction? Why is the
task being performed?

■ What calculations or data transformations are performed? How are
they defined?

137

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

Table 5.1 Comparison of textual and diagrammatical descriptions
of requirements

Document Diagrammatic

Cross-referring issues Easier and clearer to understand

Difficult to read Clearly shows workflow and process/data flow

Difficult to follow process More concise

Can be ambiguous and ill defined Easier to walk through and understand
underlying issues

Can be difficult to describe the Can provide a holistic view
complexity involved

■ Is this performed as part of a larger process? What are the data and
processing interdependencies?

Nature of any interaction

■ Inputs: What data is required? Where is it obtained? What synchro-
nization events occur?

■ Outputs: What outputs are required? Why and by whom? Where
should this information be sent and who has permission to see it?
Should this information be persisted?

■ Screen interaction: How are these screens and their functionality
defined? What are the roles being performed? Who has permission to
perform this operation, who hasn’t? How is responsibility transferred
to other groups of users or locations?

Defaults
What information is defaulted? How are these defaults defined? How are
they modified?

RISK MANAGEMENT SYSTEMS

138

Figure 5.8 Viewing the functionality of a system

Functionality

Interaction

Inputs

Outputs

Defaults

Persist

The interaction of the external environment with the system is often
specified through use cases. Use cases are stories or cases describing how
external actors (which may be other systems or users) interact with this
system in order to complete some task or action.4 These stories then
specify the system’s requirements through its defined behaviour under
various conditions. A key advantage of the use case approach is that it
encourages a walk-through of the proposed workflow with the end
users, often including example screen layouts. This process can highlight
ill-specified interactions, and incorrect sequencing of operations, and as
a result ensures that the requirements are validated.

Prioritizing requirements

The result of gathering requirements from a diverse group of users is
often a long list of sometimes contradictory requirements. From this,
the requirements must be clarified and prioritized so that any project
constraints such as available resources, budget and time can be met.
The natural tendency is for the stakeholders of any project to push for
as much functionality as possible to be delivered within the project.
This should not be permitted if it will result in a plan that contravenes
any project constraints, including exceeding the project’s risk appetite.
Including tasks that cannot be met within the project constraints will
only lead to even greater issues and possible project failure later on in
the project. This will result in an associated loss of stakeholder confi-
dence in the project when ongoing commitment is crucial for the
survival of the project. Fundamentally the issue is one of finding
balance within the delivery continuum (Figure 5.9). Delivery must be
achieved within budget and on time, but what is delivered must add
value to the stakeholders and act as a platform for ongoing enhance-
ments. If this balance cannot be achieved, it is far better to be honest
and upfront about any such issues. The stakeholders can then assess
whether more time or budget should be assigned to the work. This also
sets the expectation of open and honest communication between the
project team and the stakeholders from the very start of the project.

Given the requirements of a diverse set of stakeholders, there are two
main ways in which requirements can be prioritized:5

1. Maximizing the benefits from the proposed functionality
Functionality is prioritized so that the maximum benefit is obtained
for the organization as a whole (rather than any benefit arising to any

139

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

particular stakeholder). However, this approach to prioritizing
requirements fails to take into account the problems of precisely
defining what this benefit actually is. Typically the ambiguity of
many goals, the subjective nature in which resulting benefits may be
measured, as well as the relative influence and different require-
ments of various groups involved in the process, make this an
impossible task.

2. Satisficing the requirements of the stakeholders
Satisficing is the process of providing acceptable levels of functionality
to all of the stakeholders.

Related to the concept of satisficing is the general rule that the project
team should adopt an approach of ‘good is good enough’. Rather than
trying to solve every problem with the perfect solution, it must be
accepted that there is a law of diminishing returns. Once an adequate
solution has been determined, subsequent effort will result in ever-
reducing improvements in that solution. As a result, the decision of when
a solution is ‘good enough’ must be taken so that scarce resources can be
assigned elsewhere. Failure to do this will result in the project never fully
addressing all its requirements, just some of them with exceptionally
high quality solutions.

RISK MANAGEMENT SYSTEMS

140

Figure 5.9 The delivery continuum

Operational Risk

• Cost effective

• Timely integration

• Inadequate functionality

• Costly

• Scope creep

• Complex solution

• Delayed delivery

Delivery FunctionalityDeliver Functionality

• Inadequate functionality

• Scope creep

• Complex solution

• Delayed delivery

Validating requirements and defining key success criteria

The requirements of a system must be specified in a way that can
be understood and verified by the stakeholders of the project. Once the
requirements have been well specified, it must be possible to define the
criteria against which project success or failure will be measured. In order
to ensure that these requirements and success criteria are adequately
reviewed and agreed, a sign-off and review process should be imple-
mented. By formalizing this process, responsibility is clearly assigned for
ensuring sign-off occurs. The requirements document is then used to
specify and agree the scope of a project, defining what constitutes
minimum functional requirements. Any changes and enhancements to
these agreed requirements must then be accepted as being likely to have
an impact on the project.

Defining success criteria is also vital when dealing with external
parties who may be involved in the delivery of a system or modules of
functionality. These criteria should be used as the driver for payments
and for defining when any final completion payment should be made. In
order to ensure that the external party remains focused on delivery of
any specified requirements, it is important that payment is aligned with
the acceptance of any deliverables. As a result, it may include other
issues beyond purely functional ones such as code handover, or provi-
sion of service level agreements.

ANALYSIS

Whereas requirement gathering is concerned with the external behaviour
and functionality that the proposed solution must address, along with
any constraints on the implementation, system analysis and the later
stages of the software lifecycle are concerned with the internal design
and workings of the system. Once the initial requirements have been
gathered, they must be understood and mapped on to a consistent
analysis model and interpreted in terms of what they mean for the
proposed design. This is the point at which analysis, design and devel-
opment become intricately entwined (Figure 5.10).

The systems analysis stage is concerned with addressing the require-
ments with a logical analysis model. To simplify this process, physical
issues and assumptions of how this will be achieved are omitted. This
process will inherently require additional assumptions and constraints
concerning what data is required, how it can be structured and the calcu-

141

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

lations performed on it. As a result, the outputs from the analysis process
should be discussed with the end users to ensure that the proposed
logical model will meet their current and future requirements.

The problem discovery approaches used during the requirements
gathering stage will also be useful during this subsequent analysis.
Different perspectives will be required to group, regroup and reconsider
the interpretation of the requirements in terms of the provision of system
specific functionality.

The results of any analysis should be a logical model describing
functionality for:

■ Handling external interfaces and the presentation of information to
the users

■ Representing and handling information within the system

■ Providing other required behaviour.

This leads to a number of different views of the proposed system
covering:

RISK MANAGEMENT SYSTEMS

142

Figure 5.10 The transformation of
requirements into an analysis model

Requirements
What is required

Interpretation and building of analysis model

How requirements may be metAnalysis

Behavioural view
How the system reacts to various internal and external events, the
sequencing of those events and how sections of the system interact and
collaborate, passing data and control.

Data view
The static relationships between information within the system.

Functional view
The calculation and algorithms that must be supported within the system.

These views are validated through robustness analysis.6 This ensures
that the specified requirements are reasonable and can be supported, that
the requirements fully specify all possible behaviours and that the
analysis model is complete and able to support these requirements.

Many analysis methodologies utilize diagrammatic approaches to
provide the above views and support the validation process. Just as in the
requirements gathering process, they enable key issues to be clearly under-
stood and explained using standard representations of that information.
These diagrams may be broken down into static or dynamic representations
of the logical system. Static views tend to focus on the structure of data,
processes or decisions, highlighting dependencies and relationships, but
omit the dynamic interactions that will occur within the system. Dynamic
representations highlight how different parts of a system interact and
collaborate. They are especially important for determining and validating
system concurrency or process interaction issues.

Building an analysis model is an iterative process. It is likely that the
first attempt to build a consistent and complete model addressing the
requirements will highlight inconsistencies in the different views
within the analysis model. Each iteration should address the deficien-
cies of the previous iteration until the model is sufficiently well speci-
fied and can be clearly shown to address the requirements. This will
typically be when each iteration is addressing and exploring ever more
detailed and subtle issues concerning the system. It is important to
understand the interplay between static and dynamic representations
of the analysis model. Static views of the system are acted upon
through dynamic behaviour. They can therefore only be verified by
investigating this behaviour. Similarly, dynamic behaviour requires
some structure within which to occur. The analyst will therefore need to
iterate between these two views until they converge into a consistent
and acceptable solution.

143

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

Some of the more popular methods used in many analysis approaches
will be considered below.

Data modelling diagrams

Many approaches to analysing system requirements concentrate purely
on the flow of data and the details of the processing to be performed.
However, if the data is both to be persisted and to satisfy the ‘4Cs’ of
data quality, it is important for the analyst to investigate the interrela-
tionship of any data that will be required by the system. There are many
approaches to data modelling, the most common of which is the entity
relationship diagram (ERD) or model, which defines the main entities,
their attributes and relationships between each other (Figure 5.11). Enti-
ties are conceptually separate groupings of data attributes. Relation-
ships between entities indicate a business connection between them,
together with the multiplicity of any relationship. For example, a
system may contain two entities, financial transactions and counterpar-
ties; a financial transaction will involve a specific counterparty and a
counterparty may be involved in many transactions.

RISK MANAGEMENT SYSTEMS

144

Figure 5.11 Example of an entity relationship
diagram linking 3 entities

Entity 1

Entity 2 Entity 3

145

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

An ERD is a non-technical representation of data that can be used to
clarify the analyst’s understanding with end users, as well as
to represent a physical data model. The ERD can be further refined
through relational data analysis to remove redundant data attributes
and partition entities into a form that enhances the analyst’s under-
standing and validation of the data model. This is a process known as
data normalization.7

If an object-orientated approach8 is taken to data modelling, tech-
niques such as class diagrams that provide a richer representation of
class relationships (including data inheritance, aggregation and delega-
tion) can be used.

Data flow and collaboration diagrams

Data flow and collaboration diagrams graphically describe a static
view of what parts of the system interact in order to address some
functional requirement. Data flow diagrams show the processes that
are carried out on the data and how this data flows between functional
modules within the system. Collaboration diagrams focus more on the
interactions that can occur between different processes. Data flow
diagrams can be applied to both physical and logical models, indi-
cating both the conceptual flow of information within the system as
well as the actual implemented flow both within the system as well as
to and from external systems and users. Data flow and collaboration
diagrams should be validated against any data model to ensure that
they support a consistent view of the system.

Although not strictly data flow diagrams, the highest level data flow
diagram would be a context diagram (produced as part of the require-
ments gathering phase) that shows the system as a single process with all
the data flows to and from external systems and users. It indicates the
interfaces that will need to be supported and the integration issues in
delivering the system. Context diagrams are decomposed into a series of
internal data flows and processes. These processes may be further refined
during the analysis stage, providing finer granularity of information as
processes are further decomposed (Figure 5.12). Data flow diagrams can
identify incompleteness in the requirements gathering and analysis
process, by highlighting data flows that are not processed, data that is not
utilized or persisted data that has no source.

RISK MANAGEMENT SYSTEMS

146

State diagrams

State diagrams model behaviour that can be represented as a finite
number of states. Each state can lead to different system behaviour with
changes in state occurring based on some defined event (Figure 5.13).

Interaction, dependency and processing/flow chart diagrams

These diagrams cover a wide number of ways for viewing how processes
or workflows are broken down into a sequence of individual tasks. They
can also include dynamic information concerning how different roles or
processes interact over time. These diagrams cover:

■ Flow charts that illustrate the sequence of processing and decisions
that must be made in order to implement a given algorithm or piece

Figure 5.12 Hierarchy of data flow diagrams

Proposed
SystemContext

diagram

Level 1
DFD

Level 2
DFD

of functionality. They can be used to highlight how different
decisions result in the execution of different code paths. Unlike a
state diagram, a flow chart will usually have defined starting and end
points, with progression through the flow chart depending on
completion of certain actions or decisions, as well as the occurrence
of certain events.

■ Activity and swim lane diagrams that extend the flow chart concept to
indicate how different tasks are distributed across various user roles or
parts of a system (Figure 5.14). They highlight any interactions that
may occur and the flow of information, control and events. Swim lane
and activity diagrams can be used to highlight when certain tasks can
be performed concurrently and identify inefficiencies or likely failure
points in the way in which the system will be utilized. They can also
highlight which roles should be allocated to different users in order to
enforce various controls within the process.

■ Interaction or sequence diagrams that indicate how different processes
interact over time. They usually extend collaboration diagrams to
describe the sequencing and timing of any interactions.

147

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

Figure 5.13 Simple state transition diagram for
displaying the market risk associated with

a market price change

Initial State

Calculate risk Display risk

Price

update

Calculation

complete

Risk
displayed

148

Figure 5.14 Example of a swim lane diagram for entering
into a financial transaction and monitoring risk

Trader's

Assistant

Trader

Middle

Office

Sales Desk

Risk

Manager

Roles

Time

Take

client call

Request

price

Price

instrument

Confirm

price with

client

Execute

trade

Write trade

ticket

Fax trade

ticket

Input trade

ticket

Monitor

risk

Monitor

risk

Sales
Desk

Trader

Trader’s
Assistant

Middle
Office

Risk
Manager

■ Dependency and procedural diagrams that show how modules depend
on each other or show how the flow of control passes to different
routines within a procedural application where tasks are executed in
a sequential manner.

Diagrams that highlight process interactions are important for showing
the flow of control between processes and identifying potential ‘race’
conditions where the relative timing and ordering of the arrival of events
or data are unpredictable or cannot be guaranteed.

Decision trees

A decision tree is a simple diagrammatic representation of the branching
structure resulting from the answer to a sequence of questions (Figure
5.15). The process starts at the root of the tree and proceeds (left to right)
through a number of decision nodes to any number of outcomes repres-
ented by the tree’s leaves. Decision trees are often used to represent and
model behaviour under various scenarios and simulations.

Tables and lists

Although not strictly a diagram, tables and lists are used to describe
details of the analysis model. This may range from:

Attribute lists
List the attributes of various entities, along with the type of that attribute
(for example a number or textual string)

Data dictionaries and catalogues
Describes design decisions and data constraints

Function/Entity matrices
Describes the way in which processing and data are interrelated. It is
a powerful technique for indicating how certain events or user func-
tions cause defined actions to be applied to the data within the system.
This is set out as a simple matrix with defined functionality in one
dimension and data entities in the other. The matrix then consists of all
the actions that must be applied to the data entities within it in
response to that function.

149

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

150

Figure 5.15 Example decision tree for trading a financial instrument

New type of transaction?

Has it been through

the new business

process?

Yes

Book transaction

Using ad hoc

approach

Transaction may not

occur

Enter transaction into

appropriate system

Yes

No

No

THE DATA REQUIREMENTS FOR A RISK MANAGEMENT
SYSTEM

The aim of any risk management solution is to manage the data collec-
tion, processing and tracking of risk management information in a robust
and scalable framework. The key requirements to building any risk
management solution are to:

Collate the data
In order to be able to perform any risk analysis, the relevant information
must be obtained in a manner that has minimal impact on the operational
systems within the organization. This process should ensure the integrity
and security of any systems it obtains data from. This is also the point at
which data must be validated and cleansed in order to ensure data
quality within the management system.

Enrich the data
This will involve the addition of further information and performing
of various risk calculations to augment the data before further
analysis.

Archiving and aggregation
Different types of storage media can be used that are appropriate to the
frequency and speed of access required. The process, known as hier-
archical storage management (HSM), defines how data should be
archived in order to use available storage devices as economically as
possible and without the user needing to be aware of when data is
being retrieved from archive storage media. Typically recent data is the
most important as it reflects the current risk environment. It needs
a high level of granularity and will be frequently accessed. Other data
may be transformed or summarized into more aggregated forms in
order to limit any potential data explosion and reduce storage require-
ments. There will also be a point at which the usefulness of the data
decreases rapidly with time and it should then be archived out of
the system. This process should ensure that the information is still
available if necessary (but with slower access times). It enables
resources to be freed to maintain the ongoing operation of the system
and performance requirements.

The requirement to summarize data is often driven by a desire to
maximize resource allocation. The more summarized the data, the easier
and quicker it is to access both from a processing and a human resource

151

REQUIREMENTS GATHERING
AND ANALYSIS

ch
ap

te
r

fi
ve

perspective. It may not, however, always be possible to replace detailed
data by summarized data due to legal or regulatory reasons.

Deliver information
Once information has been extracted from the data it must be packaged
into a form that is convenient for consumption and distributed to the
relevant consumers. This information can then be used to manage and
mitigate risk within the organization. The effectiveness of any risk
management system is therefore only as good as the delivery mechanism
used. This mechanism should ensure that frequent reports or real time
data analysis is automated as much as possible, but also enable one-off
ad hoc queries to be efficiently implemented.

Manage meta-data
Meta-data is information about data. It maintains the flexibility of any risk
management solution and typically contains information concerning the
source and type of any data received. It is especially important in systems
that aggregate risk information because of the importance of transforming,
controlling and interpreting a varying set of data sources. It contains infor-
mation about the different sources of risk data, its composition, transforma-
tion, validation rules, summarizing rules and so on. Coding any raw or
source data transformation rules into meta-data can achieve enhanced
flexibility. Changes to the feeder system interfaces then only require
modifications to this meta-data rather than to the software code.

Notes

1 H. Simon, Administrative Behavior: A Study of Decision-making Processes in Adminis-
trative Organizations (Simon & Schuster, 1997)

2 J. Henry (ed.), Creative Management, (Sage, 1991)
3 D. J. Tudor and I. J. Tudor, System Analysis and Design – A Comparison of Structured

Methods (Macmillan, 1997)
4 A. Cockburn, Writing Effective Use Cases (Addison-Wesley, 2000)
5 H. Simon, ‘Rational decision making in business organizations’, American Economic

Review, 69 (4) September 1979, 493–513
6 D. Rosenberg and K. Scott, Use Case Driven Object Modeling with UML, A Practical

Approach (Addison-Wesley, 1999)
7 R. Elmasri and S. Navathe, Fundamentals of Database Systems, (Addison-Wesley,

1989)
8 I. Jacobson, Object-orientated Software Engineering – A Use Case Driven Approach

(Addison-Wesley, 1992)

RISK MANAGEMENT SYSTEMS

152

153

CHAPTER 6

System design and
implementation

Having produced an analysis model that addresses the requirements, the
design phase takes this model and refines it to a logical format that can
be implemented and deployed. This will require the grouping of func-
tionality into components and subsystems that can then be realized as a
specific physical implementation using a given technology.

Ideally, any approach that is used to specify requirements should
support any subsequent analysis and design. The Unified Modelling
Language (UML),1 which has become the de facto industry standard for
analysing and designing software systems, is an example of such an
approach. UML also encompasses the use case approach that is often
used as part of any requirements gathering phase of a project. A consis-
tent approach that links across the different stages of the software devel-
opment lifecycle can help to reduce the likelihood that requirements will
be omitted from the analysis, design and subsequent implementation. It
also aids traceability within the process.

PHYSICAL ARCHITECTURAL AND IMPLEMENTATION
REQUIREMENTS

Building enterprise applications is much more complex than building
standalone applications or desktop solutions. Risk management solu-
tions typically fall into the enterprise applications category, as they

must deal with multiple events, have superior performance and
support multi-user access. The physical architecture onto which any
enterprise system must be deployed can be assessed in a number of
dimensions:

Scalability

Scalability concerns the ability to attain any performance requirements as
the processing demand increases. Scalable architectures are achieved in
one of two fundamental ways:

Vertical (scale-up)

This comes from adding additional resources to existing computers (such
as memory and processors) in order to provide initial scalability. It is
usually cheaper than horizontal scaling, since most computer architec-
tures are designed to utilize several processors. It can however prove to
be very expensive if significant scalability is required, since it is funda-
mentally limited by the underlying hardware performance characteris-
tics of the computer, such as memory, communication and processor
speeds, which can be expensive to increase.

Horizontal (scale-out)

■ Scalability can be achieved by clustering additional computers into the
architecture so that they appear as a single computing resource. A
common implementation of this is the also called ‘pizza box’ approach,
whereby additional computer units are stacked like pizza boxes on top
of each other in a rack system. This approach can be further refined with
blade technology which removes the complex cabling to each unit and
increases processor packing densities. This is achieved by removing the
individual printed circuit boards from each unit and vertically slotting
them next to each other into a common cabling back plane.

■ Distributed computing describes the situation when computing
resources, rather than being located in a single location, may be
distributed across the organization and connected using a network.
The most common distributed computing environment occurs with
users having PCs on their desk, which utilize shared computers or
servers that provide certain services such as a centralized filing system
or database.

RISK MANAGEMENT SYSTEMS

154

■ Grid computing is an extension of the concept of distributed computing
that utilizes any of the independent computing resources within the
organization, depending on their availability. These can be dynamically
allocated tasks depending on their spare computing capacity, capa-
bility, performance and any reliability considerations. Grid computing
can provide highly cost-effective horizontal scalability but reliability
and availability can be an issue, depending on the location and usage
of the resources; PCs on a user’s desk are likely to be in a less reliable
environment than servers located in a secure computer room.

Maintainability

Maintainability refers to how easy and cost effective it is to fix, modify or
extend existing functionality or increase capacity requirements. Ideally,
changes in one part of a system should have minimal impact on existing
functionality. Component-based approaches tend to lend themselves to
more maintainable solutions, purely because component-based design
tends to segregate functionality into separate well-defined components
which interact through clearly determined and maintainable interfaces.
Maintainability is especially important where the system interacts with
users or other external systems, which may radically change over time,
even if basic processing requirements do not.

Reliability and fault tolerance

Reliability indicates the ability of the implementation or underlying phys-
ical architecture to support any required functionality. Reliability is
achieved through fault tolerance, which describes how a computer system
or piece of software is designed to act in the event of hardware or software
failure. In a fault tolerant system failure will result in a procedure being
initiated that ensures there is minimal loss either in the provision of
system functionality or of data integrity. Fault tolerance may be imple-
mented within software or hardware, or some combination of the two.
Software can be used to reroute processing to other servers or detect
system failure, while hardware can provide additional fault tolerance
through the use of backup or redundant hardware such as with disk
mirroring (duplicate concurrent storage of data on another disk), RAID
(redundant array of inexpensive disks), additional processing capability
or secondary network connectivity.2

155

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Higher levels of reliability have associated higher costs and so must be
considered as part of a cost/benefit analysis. This cost/benefit analysis is
a business issue as the project sponsors must decide what cost level they
are willing to accept in order to achieve a given level of reliability. If real
time risk information is critical to the business then a high level of relia-
bility will be required. Higher up the risk hierarchy, the impact of a delay
in providing risk information may not be so critical.

When a system fails or is not available, a failover process will be used
to transfer processing to other secondary or backup systems. This may be
achieved either as a:

Hot failover
Where failover occurs automatically with negligible impact on any users
or processing.

Warm failover
Where the user is required to log in to a secondary system which is
consistent with the state of the primary system up to the point where
system failure occurred.

The degree to which the previous state of a system can be recovered in
the event of a failure will depend on the persistence and replication of
information that is impacted by it. Transactions and information persis-
tence introduce bottlenecks and can reduce performance but ensure the
integrity and consistent state of a system.

Performance

The architecture should ensure that the solution attains any performance
requirements in terms of throughput and latency. Throughput indicates the
amount of processing that can be performed in a unit of time, whereas
latency indicates the delay or perceived response time between initiating
and receiving back any processed information. Any bottlenecks in the
architecture will need to be identified, addressed and minimized.

Manageability

Manageability refers to the ability to manage the day-to-day overall
availability and performance of the system. Simple architectures that

RISK MANAGEMENT SYSTEMS

156

utilize few resources are often easier to manage than more complex
systems. Limiting the number of resources utilized may, however, reduce
performance and reliability. The emergence and use of component-based
frameworks such as J2EE and .NET have dramatically increased the
manageability of complex and highly scalable architectures compared
with previous frameworks such as the Common Object Request Broker
(CORBA) and DCOM.3

Security

Security is about ensuring that data is neither modified by or disclosed to
unauthorized individuals. Secure systems reduce operational risk but are
more complex to specify, costly to develop, and require more data main-
tenance in setting up and maintaining security hierarchies and privileges.

Availability

Availability is concerned with managing the access to scarce resources
and ensuring the system is available for use when required. Availability
is related to reliability, since hardware or software failure in an unreliable
architecture will result in the system becoming unavailable. Additionally,
some architectures do not scale well as the number of users of a system
increases. This can result in a dramatic reduction in performance or even
failure to be able to use the system and often occurs when each user
accessing a system requires a significant amount of system resources. It is
often seen when a large number of users access a shared database; each
user requires a large amount of database memory to be allocated to them
in order to manage this access. Although adding more memory to the
database server can address this problem, the design will have a funda-
mental user limit based on the available or maximum amount of memory
that can be physically installed.

The management of transactions across multiple systems and the
managing of access to limited resources can, however, be solved by
using transaction processing (TP) monitors. Rather than each user
having his or her own personal connection for utilizing functionality
or accessing data, TP monitors control access to a limited number of
resource-intensive connections and share these across all the users
(Figure 6.1). TP monitors can be expensive to manage and implement
in a distributed environment and should only be used when they

157

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

are required. They do, however, address a key issue in managing
distributed transactions and controlling access to limited or central-
ized resources.

ACHIEVING CONCURRENCY IN PROCESSING

Scalable, high performance, risk management solutions require multiple
tasks to be performed concurrently. This permits resources, such as
multiple servers or multi-processor machines, that can perform multiple
tasks concurrently to be utilized in order to reduce the elapsed time taken
to perform computationally intensive tasks. It also ensures that a system
remains responsive while it is waiting on other processing to be
completed or events to occur. The implications of a lack of concurrency
are most evident within GUI applications when an application can
appear to ‘hang’ and not be responsive to user interaction until the
required processing is completed or an expected response is received
from another system. Concurrent systems or applications are broken

RISK MANAGEMENT SYSTEMS

158

Figure 6.1 Using TP monitors to manage the use of scarce resources

Users

Users TP

Monitor

Large number of

connections

Large number

of connections

Limited number

of connections

down into processes, which are instances of pieces of software running
on a computer. The models for concurrent processing are categorized by
how memory is used (shared versus distributed) and how communica-
tion occurs:

Process concurrency

■ Shared memory: Each process can access a shared area of memory, but
otherwise executes independently.

■ Data parallelism: A process is able to perform the same operation on a
number of pieces of data at the same time, such as being able to add or
multiply all the elements of a list by the same number.

■ Message passing: The system runs as a collection of independent
processes, each with its own private local memory. These processes
communicate by passing messages between each other. This approach
is one of the most popular models for designing concurrent systems.
Such systems are easier to debug and are more tractable to mathemat-
ical proof and validation.4 This model is also applicable across a wide
range of different hardware platforms, avoiding software and hard-
ware vendor dependencies; message passing can be implemented on
most networked computers and multiprocessor machines.

Intra-process concurrency

■ Single-threading: A process usually has a single ‘thread’ or path of
execution through the software where tasks are performed in a
sequential, deterministic manner.

■ Multi-threading: A multi-threaded process is one where there are
multiple threads that are all executing (or appearing to execute) at the
same time, performing small units of work and then terminating as
required. Multi-threaded processes have the advantage that
processing may continue even if one thread is waiting on some
external communication or event. There is, however, no general way
to predict how the instructions of different threads are interleaved.
A change to shared data by one thread can also be seen by the other
threads in the process.

Whenever there is concurrent reading and writing access to shared
data (such as communication between processes using shared memory
or in multi-threaded processes) there is always the potential that, if this

159

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

access is not synchronized, the shared data may be corrupted in some way.
Synchronization is provided by constructs such as mutual exclusion
locks, condition variables or semaphores.5

The forms of concurrency that are utilized and the resulting design of
any system must enable the scalability features of the architecture to be
exploited. For example, horizontal scalability is really only possible with
message-based multi-application architectures since it is not usually
possible to directly share memory between a number of different
computers. Scalability for multi-threaded applications can only be
achieved through vertical scalability, and will require there to be more
threads than there are available processors. For a single threaded appli-
cation the only option is to utilize a higher performance processor to
execute the application. This limitation fundamentally constrains the
potential scalability and performance of certain designs.

THE DESIGN ARCHITECTURE

System architectures have evolved over time in order to provide more scal-
able and distributed architectures. The degree to which processing can be
distributed has been indicated by the number of tiers or logically separate
levels in the architecture. Historically the approach to building a risk
management system has evolved from single tier to multi-tier architectures.

Single tier architectures

Single tier architectures are also known as monolithic architectures. These
systems consist of a single application that stores data, implements busi-
ness logic and performs data visualization and user interaction. They
may only be vertically scaled since the solution consists of a single appli-
cation that will run on a single server. There are therefore inherent limits
on their scalability depending on the level of threading within the soft-
ware and the physical scalability limits of the server.

Two-tier architectures

Two-tier architectures, otherwise known as client–server applications,
separate data visualization and user interaction (the client) from transac-
tion management and data storage (the server).

RISK MANAGEMENT SYSTEMS

160

The client application can either be fat or thin. In a fat client application,
the client application would, in addition to handling data visualization
and user interaction, also perform a large amount of processing and, as a
result, typically have a large amount of embedded business logic and
functionality. In a thin client application, the business logic and function-
ality would be implemented on the server, leaving the client purely
performing display operations and forwarding user interaction infor-
mation on to the server. In two-tier architectures, the client and server
would typically be deployed on different machines connected via a
network for transferring data between the two.

N-tier architectures

N-tier architectures (which are typically three tier) extend the two-tier
architecture so that data visualization and interaction, business logic/func-
tionality and data persistence are logically separated. The logical design of
this architecture may result in either single or multiple numbers of busi-
ness or other functional layers that interact. These additional layers result
in additional tiers to the logical architecture, giving rise to the term N-tier.

THE INTEGRATED SERVICE-ORIENTATED APPLICATION
ARCHITECTURE

The concept of multi-tier architectures has evolved into the concept of an
integrated application architecture or service-orientated architecture.6

This is now seen as a valid alternative to the silo application approach
that currently tends to dominate in financial organizations and is aimed
at providing a consistent and scalable solution to system design. This
architecture provides a generic view of the services and concepts that
need to be provided in a multi-tier architecture (Figure 6.2). Functionality
is broken down into:

Transactional services
Data quality is key to both trading and risk management systems, irre-
spective of system or processing failure. Transactions are units of
processing that must pass the ACID test:

■ Atomic: changes within a transaction are either all successfully
applied or none at all are (in the event of a failure or other error)

161

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

■ Consistent: transactions change data from one consistent and valid
state to another

■ Isolated: changes to data within a transaction are not visible outside
the transaction until it is complete

■ Durable: once a transaction is complete the changes are permanent
and do not suddenly disappear for some unknown reason.

Transaction support is usually supported by some form of locking
model that prevents the simultaneous modification of data. This locking
may be optimistic (where a transaction may fail if any of the data has
been modified since the transaction began) or pessimistic (where no
other changes are permitted outside this transaction on the data).

Business Service
This is responsible for the business logic and functionality of the system.
Separating business functionality from data and event distribution has

RISK MANAGEMENT SYSTEMS

162

Figure 6.2 The integrated application architecture
for risk management

Presentation Layer and External Interfaces

Transactional

Services

Business

Services

Batch

Capability
Persistence

Integration Framework

Common data format

Users External systems

Data transformers

the advantage that calculation algorithms and other business issues are
separated from the software engineering issues concerned with how this
business functionality should be utilized. It is then possible to support,
for example, multiple calculation styles (such as incremental, full, event-
based, timer-based, on-demand) depending on the manner in which
information is delivered or requested, rather than tying it to the imple-
mentation of the calculation or business functionality.

Presentation layers and external interfaces
Multi-tier architectures naturally lend themselves to deployments of data
visualization and user interaction over a number of different technolo-
gies. Each approach is able to utilize the same common business func-
tionality and data persistence but can choose to display or make this
information available in a different manner. Visualization may be via a
web browser that provides a thin client interface, responsible only for
rendering and displaying information, or it may contain applets, which
are small client applications that are downloaded to the client machine
and run within a browser environment. Alternatively, a GUI client appli-
cation may be installed that runs on the client machine and typically
provides a richer interface than can be provided by web clients or
applets, although the gap between these two approaches is reducing.

The advantage of decoupling external interfaces from the underlying
functionality is that it is easier to support different types of system inter-
actions without having to replicate any of this functionality in the inter-
face. For example, if validation is performed in a fat client application
then, when that data also needs to be received electronically over a
network or via a web browser, the validation logic must be duplicated in
each interface in order to handle this additional form of interaction. This
duplication can easily lead to inconsistent functionality, as modifications
must be replicated in multiple points within the system.

Thin client applications can also dramatically decrease testing require-
ments, as most of the key functionality to be tested is concentrated
behind a single interface, which can also be accessed via other routes
apart from a GUI. The proliferation of fat interfaces will conversely
increase the amount of code to be tested since key pieces of functionality
are likely to be duplicated in multiple interfaces.

Data transformers
Data external to the system is likely to be represented using different data
models and data representations. Once data has been transformed

163

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

and mapped into a common representation, it can be processed within
the system.

Integration framework
Frameworks should provide support for distributing processing within
the system, event notification, data distribution and security. This
permits distributed and scalable applications to be easily developed.

Persistence
Some information will need to be persisted or maintained over a long
period of time, irrespective of whether the system has had to be restarted or
upgraded during that period. This will require the storing of information to
a non-volatile storage device such as a filing system or database.

Batch capability
Any system is likely to require some level of batch type processing.
These are tasks that are performed in a non-interactive manner, perhaps
for performance reasons or in order to provide certain types of mainte-
nance or processing which cannot be performed in an interactive real
time manner.

The aim of this architecture is to decompose a design into the different
types of tasks that will be required, and to provide well-defined interfaces
to functionality that can be freely accessed within the architecture using a
standardized internal data model. This internal data model should be
independent of any data models used outside the system, provided data
can be transformed between the two when required. The services-based
architecture is the underlying basis of web services. These are a set of
modular applications or services with a publicly exposed standard inter-
face that provides access to data and functionality via a network.
Although they are an ideal way to provide standardized functionality that
can be shared across the organization, they do not address one of the
major issues within risk management, which is obtaining the requisite
information from existing systems with minimal impact upon them.

INTEGRATION AND MIDDLEWARE

The integration of distributed processes or systems can be achieved
through the use of connectivity solutions called middleware. Middleware
enables functionality to be dynamically ‘glued’ together with little

RISK MANAGEMENT SYSTEMS

164

additional effort or the writing of large amounts of software. Although
middleware can be written as part of a project, the expense and know-
ledge required to implement an efficient, robust and scalable solution
should not be underestimated. As a result, it is only appropriate to
develop such approaches when the form of interaction is trivial or needs
to be highly customized. Even if proprietary third party middleware is
used, many are based on common standards and any proprietary inter-
faces or behaviours can be hidden behind software ‘wrappers’, reducing
vendor tie in.

Middleware

Risk management is a data dominated problem. Efficiently obtaining
and transporting this information to where it is required is critical to
the success of any risk management solution. The term middleware is
associated with a large amount of jargon and many definitions as to
what exactly it is, but it can be thought of as any software that allows
applications to interact, facilitating this interaction despite differences
in underlying business models, operating systems, data representa-
tions, development technologies and programming languages. Middle-
ware enables all types of applications, including legacy systems, to
interact and is key to any architecture because it brings together
disparate heterogeneous systems into a single integrated solution. The
main types of middleware are:

Message-orientated middleware (MOM)
Data is converted (or marshalled) into a message and then passed in a
one way data exchange with a message type that is used to define where
it should be routed, similar to a letter being placed in an envelope which
is marked with the delivery address.

Language-based middleware
Data is requested using a special language, such as SQL,7 which is used
to obtain data that meets some specified criteria.

Remote procedure call-based middleware (RPC)
The middleware provides interfaces used to pass a number of parameters
to another process, in order to perform a defined operation and return
any associated results.

165

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Distributed object-orientated middleware (DOM)
DOM hides the location of objects, permitting methods on remote objects
to be invoked in the same manner as those on local objects. CORBA is one
of the most frequently used examples of this type of middleware.

Part of the confusion with the term middleware is that it covers prod-
ucts that provide anything from pure data distribution to the ability to
support and invoke functionality in different processes, possibly located
on different machines. MOM is often viewed as the superset of all
middleware because fundamentally all inter-process communication
requires the transfer of data, be this to exchange information or to access
specific functionality.

At the simplest level, the transfer of information in middleware is
between something that is producing the information (the producer) and
something that requires this information (the consumer). The interaction
between the producer and consumer may be in a:

Push strategy
Data transfer is initiated by the producer, who ‘pushes’ this out to the
consumer(s). Push strategies can ensure that information is kept current
by pushing out updates as they occur. This will however occur even if
those data updates are not required.

Pull strategy
Changes to data or calculated results are requested from the producer
who returns the data to the requesting consumer. Pull strategies reduce
the amount of effort required in distributing information but at the
expense of ensuring that the consumer is informed when data becomes
out of date or new data is available.

The interaction between the producer and consumer may be:

Synchronous
This approach will expect the thread of execution sending the data to
wait until that data has been received and acknowledged by the consu-
mer. This blocking behaviour provides better support for transaction-
based messaging, the receipt of data when executing an RPC (in what is
known as a request/reply interaction) or the handling of error situations;
processing only continues if success or failure has been determined or
when any results have been sent back to the consumer. It does however
introduce a tighter coupling between the producer and consumer.

RISK MANAGEMENT SYSTEMS

166

Asynchronous
This type of interaction introduces a looser coupling between the producer
and consumer; neither the producer nor the consumer are blocked waiting
for receipt of data. This can improve performance if communication
latency is an issue within the design; processing can continue rather than
the process being forced to wait for an acknowledgement.

Asynchronous interactions can introduce timing issues concerning the
access of data as the precise point and time at which the data is sent and
received cannot always be determined by the other party unless some
form of data versioning or time is ‘stamped’ on the data.

It should be clear that middleware is complex. It is software that
implements many different approaches to enable processes to interact.
Different types of middleware support different types of programming
interfaces. These interfaces may be static and predefined or may be
generated for the specific requirements of the interacting processes,
using an interface definition language (IDL) to define and generate
them. They may also be supported directly by the language or runtime
environment, such as with Java’s remote method invocation (RMI).8 The
most common logical models for how the producer and consumer of
data interact are:

Publish/Subscribe
Publish/Subscribe is the most common push strategy, and is typically
used when there are many consumers and many producers. Producers
will publish messages to a subject, which are then distributed to all
consumers who have subscribed to that subject. The producers need not
know who all the consumers are; they will publish the data regardless
and the consumers will independently subscribe to receiving it. This
approach is commonly used to distribute market prices.

Point-to-point
This is used when there are many producers but only one consumer.
Each point-to-point communication is associated with a channel or queue
between a named producer and a named consumer with the consumer
able to access multiple channels associated with different groups of
producers. The nature of this interaction may be unique and customized,
leading to a number of unwieldy and difficult to maintain interfaces and
process interactions.

167

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Broadcast
This covers a number of approaches to sending data to all potential
consumers.

Middleware should always try and ensure that data is not corrupted
and is received in the order it is sent. The delivery of data can however
be performed to different degrees of reliability. Middleware reliability
defines the likelihood that a message reaches its intended destination and
is categorized as:

Reliable
In the absence of any system failure, the consumer will receive any data
sent to it; no data will be lost in transit. This approach is commonly used
for transferring volatile, constantly updating information such as the
prices of financial instruments. It is not appropriate for transferring
transactional-type information or trades in financial instruments as the
possibility of losing that data in the event of a failure is too great.

Certified
The producer is notified of the successful or unsuccessful delivery of data
to each consumer.

Transactional
The processing of data transferred using the middleware is utilized in
a transaction, which has the ability to be rolled back or undone if part
of the process fails.

Guaranteed
Data will always be delivered to the consuming system no matter what
the current state of that system. If any aspect of the system is not avail-
able or fails after the producer has sent the data, the information will be
reliably persisted until the consumer is available.

Each of these delivery methods has different performance implications
and physical resource requirements.

When building a risk management solution, various types of middle-
ware are likely to be required. One middleware strategy will be required
to obtain risk information from the different producers of risk data
within the organization, with another strategy being used for accessing
functionality found throughout the organization and distributing
processing to obtain improved performance and scalability.

RISK MANAGEMENT SYSTEMS

168

Enterprise application integration (EAI)

Historically systems are built using the technology that is in vogue at the
time and then only replaced when there is a clear cost/benefit. This
leads to a mix of different technologies in which risk information is
likely to reside. As a result, any risk management solution must co-exist
with other technology and systems within the organization. Adapters
that will permit different technologies and business processes to interact
must be built to access existing functionality and data in these legacy
systems. EAI covers the plans, methods and tools for enhancing,
consolidating and co-ordinating all these systems within the enterprise.
It is more than middleware and may also provide data transformation
tools and implement business rules to control the flow of data. EAI
provides a holistic view of an organization’s business, showing how
existing applications fit together into the (new) model for the organ-
ization, as well as helping to devise a strategy to efficiently reuse
existing legacy applications and databases while augmenting it with
new applications and data.

Extensible protocols

Risk management requires data to be exchanged between subsystems
within a risk management system, with external applications that may be
the sources of risk data and even with systems outside the organization
that provide information on the external environment (such as market
prices or credit assessments of companies). Within an application devel-
oped by a single group, there will be significant control over the way parts
of the application interact. This interaction will be optimized to ensure
that the application meets any performance requirements. As a result,
efficient methods for data transfer will be implemented that may result in
tighter levels of coupling and dependency between the various producers
and consumers within the application. When this level of control
decreases and there is a need to interface with other applications outside
the group’s direct control, which utilize different interfaces and data
representations, it may be difficult to agree on the form in which data
should be exchanged (Figure 6.3). These systems are also likely to change
in a manner beyond the group’s control, implying that any coupling
should be as loose as possible, ideally not requiring any changes to either
system to have to be co-ordinated.

169

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

The latest concepts in data interchange for achieving this loose
coupling is to use XML, which is an extensible methodology for encoding
data into text. The emphasis with XML is on the message content, not on
how that data is sent over various types of middleware. XML has a
number of advantages over other approaches to data encoding used in
the transfer of data:

■ It can be viewed or written using text editors rather than proprietary
tools

■ It is flexible, being able to represent complex data structures

■ It is extensible in that additional data can be added without impacting
the interpretation of other data within the message. XML achieves this
through the use of tags to link data items with values. Less extensible
approaches have relied on field location within a message, which
requires co-ordinated changes between the consumer and producer
when the message format is modified

■ It is technology independent.

RISK MANAGEMENT SYSTEMS

170

Figure 6.3 Coupling of systems throughout the organization
L

o
o

se
r

co
u

p
li

n
g

In
creasin

g
 co

n
tro

l

Intra-application

Inter-application

Inter-organization

Data Transformation

Data Transformation

Negotiation

Negotiation

XML does not solve the fundamental problem that both the
consumers and the producers of data must agree on how that data will
be represented (defined by an XML schema), but it does loosen the
coupling so that the format can be extended to include further infor-
mation without having to rely on co-ordinated changes to the consumer
and producer interfaces. This makes it ideal for interfacing to external
systems that are not under the control of the risk architect or are subject
to slower upgrade constraints; additional information can be included in
the XML message that can be utilized once it is made available or when
the consumer interface is updated to interpret it.

A number of standard protocols such as ORML (operational risk
mark-up language) for exchanging operational risk information within
the financial services industry and SOAP and WSDL (used in web
services) have been derived from XML. They address the issue of
agreeing on the schema to be used by providing an accepted and
proven industry standard that can be adopted by both the consumer
and producer.

XML is, however, a verbose method for transferring data and can
have an adverse performance impact on systems and networks if the
volume of data transmitted is excessive. This is often acceptable given
the flexibility of using such an approach. The performance impact can be
an issue when distributing price data within organizations but is typi-
cally not a problem when distributing less volatile and less frequently
updated information.

APPROACHES TO PARALLELISM IN SOFTWARE

In order to exploit potential process concurrency, the risk management
problem must be decomposed into a number of tasks that operate
concurrently and interact with each other. This decomposition may be at
a fine- or coarse-grained level. Fine-grained parallelism is concerned
with the decomposition of small units of processing into concurrent
operations whereas coarse-grained parallelism is concerned with the
decomposition of the problem into a number of high level concurrent
tasks. Developing software which executes in parallel does however
introduce a number of new challenges for the developer such as the
danger of deadlock (when there is a circular dependency between
processes so that none is able to proceed) and non-determinism, where
it is not possible to guarantee the order in which certain events or
processing will occur.9

171

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

There are a number of broad classes of approach to decomposing
a problem into a number of tasks that can be executed concurrently. For
simplicity, only message passing-based approaches to parallelism are
considered here. These are the most prevalent and appropriate
approaches to developing multi-tier systems:

Event or process farm replication
This is the easiest form of problem decomposition. Each process performs
the same function but with a different set of data. All processing is
performed independently with the only communication being the receipt
of new data or forwarding of results.

Data or geometric parallelism
Each process performs a similar function but only receives a subset of the
data. The division of this data is such that the data in any one subset is in
some sense related so that, in the main, only local operations are required
to process it. Typically a process will have to access non-local data or
forward on results to processes responsible for other data sets. Examples
of this type of parallelism are seen in linear algebra where operations are
applied to large vectors or matrices. The data in these matrices can be
broken down into sub-vectors or sub-matrices, whose processing can be
distributed over a number of different processes.10

Distributed, functional or algorithmic parallelism
This is a more fine-grained form of parallelism, specific to a particular
algorithm that breaks down into a number of concurrent processes that
interact in solving the problem. The data then flows between the
processes in the system, requiring the software to have a fairly elaborate
communication and control structure.

Dynamic parallelism
All the previous forms of parallel decomposition have been static, in that
the resources allocated to the problem are fixed. The alternative is to
migrate or create new processes during the execution of the software, as
they are required, in a data-dependent manner, in order to maximize the
utilization of processing resources available.

Hybrid decomposition
This is a combination of the above approaches, where the problem
exhibits a number of different types of parallelism for different aspects of
the problem.

RISK MANAGEMENT SYSTEMS

172

DATA MANAGEMENT, PROCESSING AND PERSISTENCE

Persistence is a problematic area in many designs. The technology used
to persist data often changes, and can adversely impact poorly designed
systems. As a result, the system should utilize as technology neutral an
approach as possible, making the minimum number of assumptions
concerning the particular persistence technology used.

One frequent design error is to persist or replicate data that does not
need to be persisted or replicated. In real time risk management applica-
tions, many pieces of data are extremely volatile, rapidly changing in
response to frequent market or trading events (Figure 6.4). Traditional
databases find it difficult to keep pace with the typical rates with which
data can be updated – if all these changes are to be persisted either before
or after they have been processed – and introduce a bottleneck into the
system. Instead, the risk management solution could aggregate risk
information from various systems, and retain this information in

173

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Figure 6.4 In-memory risk aggregation and persistence

Trading System 1 Trading System 2 Trading System 3

Risk Aggregation System

(Risk information maintained in memory)

Periodic persistence out

to data warehouse when

information will be

required in future

Real time risk information

memory. Should the risk management system fail, it can reobtain this
information from the various source systems. This information should
then only be persisted if it will be required again in the future and can no
longer be efficiently extracted or recalculated from the source systems
responsible for the data.

By decoupling business functionality from persistence, access to the data
can be hidden behind interfaces and adaptors that obtain the information
from wherever it may reside, be it in memory or in a database (Figure 6.5).

It also decouples the business functionality from implementation
issues of how, when and where data is persisted and obtained. All that is
required is the ability to uniquely identify data and for some data service
to be able to relate this information to a specific location responsible
for that data (Figure 6.5). Whether this data is then obtained locally or
from a remote location should be immaterial to the consumer of the
information.

Not only does this hide issues of when data should be persisted but it
can also hide other issues concerning data replication. This has the
advantage of aligning the owners and users of that data through a single

RISK MANAGEMENT SYSTEMS

174

Figure 6.5 Hiding the location and implementation of data persistence

Data

Owners

Data

Owners

Data

Users

Replication

Replication

Data

Service

Data

Owners

Data

Owners

Data

Users

becomes

DatabaseMemory

interface or service that manages access to the data, so that it can be
shared and updated in a co-ordinated manner. Rather than data owners
being concerned with keeping data to themselves and replicating read-
only copies to other users, in order to prevent unpleasant side effects
from other users accessing their data, a single controlled service is used
by everyone which hides these specific implementation details.

When producing the logical application design for managing data, the
model will view data as a centralized store in certain parts of the system. By
centralizing data, it is easier to monitor and control the dissemination of
information. However, this introduces various constraints on the imple-
mentation that must be addressed (Table 6.1). The secret of a good imple-
mentation is often how the problem and data domain are divided up in
order to provide an efficient solution. Centralization of processing and data
can reduce the overall amount of processing and replication but increases
the volume of data that may need to be transferred if frequent remote access
is required. Localizing data and processing will require less data transfer
but may result in greater local processing requirements and data replication.

Replicating data should improve access speed since the replicated infor-
mation will be ‘closer’ to where it is required. Maintaining multiple local
data stores can, however, dramatically reduce manageability since each
site will require the skills and resources to manage that data. There may
also be additional reconciliation issues. As a result, data should only be
replicated when performance demands it and preferably only for stable
read-only information.

175

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Table 6.1 Trade-offs for global system design of centralization
versus localization of data and processing

Centralization Localization

Introduces a bottleneck into Improved performance and scalability
the implementation

No synchronization issues Data consistency and reconciliation issues
between source and replicated data

Latency in accessing information More responsive
for non-local users

Single site to manage and deploy Difficulty in managing multiple sites
system to

Data is always consistent and current Potential replication problems

Single point of control Replicated data is always out of date

Application Application

Shared data

local data owned

by application

Application Application

Data owned

by application

Data owned

by application
Replicated

data

Replicated

data

Replication

Updates

local data owned

by application

Although data access may be via a common data service, behind this
façade the different approaches to the partitioning, sharing and repli-
cating of data may be utilized as seen in Figure 6.6. Data that may be
modified by more than one application is either placed in a single loca-
tion or ownership is taken by one of the applications, to which the other
applications must make requests in order to effect changes. Effective
management of data whose values can be changed by multiple processes
is vital in any concurrent environment. It not only drives data synchro-
nization and copy policies but mutable data will require transactional
and locking support in order to ensure data consistency. This can most
effectively be provided when a single location is responsible for that data.

The partitioning of data is typically one of deciding data ownership.
Whichever application owns the data will be responsible for maintaining
and updating it and notifying other processes of any changes to that data;
any modifications must be directed at that system, with any associated
performance implications. This should result in data being stored locally to
where it is entered and modified most frequently. For example, trading
positions initiated in New York should be stored locally in New York rather

RISK MANAGEMENT SYSTEMS

176

Figure 6.6 Approaches to accessing shared data

than, say, London, where network latency and bandwidth issues would
impact any trading in New York. This process can be complicated if a posi-
tion is traded in multiple locations at different times, and may require
ownership of that data to migrate from location to location. This can compli-
cate the collection of risk data, in order to ensure that data is not ‘double
counted’ and will rely on successfully determining which system is respon-
sible for the required data at a given time or being able to uniquely identify
replicated data so that duplicate information is clearly indicated.

Although transactions and the ACID test are reasonably easy to
enforce when all the affected data is localized into a single location, or if
only one user can write the data, when the data in a transaction is
distributed over several locations, this can be more complex to manage.
Fortunately distributed transactions are supported by the concept of a
two-phase commit transaction.11 If any sub-transaction in the distributed
transaction fails, then the whole transaction will fail.

In the same way that data should be owned by a single location or
application, business functionality should also be standardized and
shared by all interested systems. For example, a standard methodology
for calculating the market risk of an instrument should be used
throughout the risk management hierarchy. This can be achieved by

177

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Figure 6.7 Leveraging existing functionality
within the organization

Front Office Risk

Management System

Corporate Risk Management

System

Calculation

set

Results set

Front Office

Calculation Engine

leveraging existing functionality in the systems that are viewed as
owning that functionality within the organization. Calculation
requests can then be passed on to these legacy systems that own the func-
tionality and the associated result sets received back (Figure 6.7). This can
also be achieved by extracting the required functionality into a separate
scalable service that is directly accessible by all interested applications in
a similar manner to the previously described data service.

DATA WAREHOUSES

Higher up the risk management hierarchy there is a need for a more
holistic view of risk information, monitoring how this has changed over
time and what has caused these changes to occur. Such consistent views
of the organization are usually provided by data warehouses or decision
support systems. Bill Inmon, one of the key figures in developing the
data warehouse concept, defines a data warehouse as a collection of data
which supports management decision making which is:12

Subject orientated
Many systems have a process or functional orientation. A data ware-
house focuses exclusively on data modelling.

Integrated
A data warehouse integrates all data into a common data model,
removing any differences in data representation chosen by the designers
of the feeding systems.

Non-volatile
Data warehouses only permit data uploading and data access. Updates
(in their general sense) are not permitted to data (unless the snapshot of
data was loaded incorrectly) and data will remain unchanged until it is
either summarized or purged from the system.

Time-variant
All data is accurate as of some specific previous moment in time (rather
than being the real time information which is required in an operational
environment). As a result, time tends to act as a unique identifier for
accessing the data. This versioning of data within a data warehouse

RISK MANAGEMENT SYSTEMS

178

ensures a consistent view of the organization, which will not suddenly
change during a complex risk calculation.

The requirements above imply specific design considerations (such as
optimizing the database for searching rather than updating or deleting
data), which will result in a database model, and design that may be
significantly different from that used by online transaction processing
(OLTP) systems. It is important not to think of a data warehouse as
simply duplicating information in OLTP systems. A correctly imple-
mented data warehouse only maintains the information that is relevant
to it and the time horizons of the two systems are very different; data in
an operational environment is concerned with up to date, real time data,
while a data warehouse is likely to contain data which covers a much
greater time horizon. The process of integration also means that the data
is likely to have been radically altered as it is imported into the data
warehouse. The challenge for the risk system designer is to implement a
framework that can leverage common functionality to provide both real
time risk management information lower in the risk hierarchy, as well as
a more holistic decision support system that monitors this information
over time.

One of the major challenges faced by data warehouses is obtaining
data when the source systems and data representations may be
constantly changing. Jenks13 noted that the greater the degree of
semantic volatility in the source data, the greater the need for data ware-
house layering where multiple data marts, or reduced scope data ware-
houses, aggregate data which is then fed into a data warehouse. The
development of multi-tiered data warehouses is a common feature
described in the data warehouse literature, and is recommended by
many data warehouse experts.14 This approach permits an architecture
that can support both flexibility and scalability to achieve short-term
tactical as well as long-term strategic goals. Each of the layers in a multi-
tiered data warehouse is aimed at solving a different type of problem,
supporting different sets of users and the problems posed by different
constraints.

One problem with using data warehouses has been that they are opti-
mized for general queries using star or snowflake schemas15 that
represent the multidimensional nature of the data and support its
processing using OLAP and data mining tools. Attempting to optimize a
data warehouse for specific data queries can be a never-ending task and
one that no one data model or design is likely to be able to support.
Instead, data warehouses should be used as a read only source of quality

179

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

data and information extracted, if required, for processing using external
tools and applications which can be optimized for certain frequent types
of data access and analysis without adversely impacting the design of the
data warehouse (Figure 6.8).

PRODUCING HIGH PERFORMANCE SOLUTIONS

The key to performance tuning is identifying performance hot spots in
processing and inter-process communication. Performance is impacted
by infrastructure constraints as well as design and implementation
decisions such as:

■ The manner of decomposition of the system into concurrent processes

■ Latency and bandwidth of the network

RISK MANAGEMENT SYSTEMS

180

Figure 6.8 Efficiently extracting data from data warehouses

Caching and access
optimization software

■ Availability and capability of processing resources

■ The representation and availability of data and how efficiently it can
be accessed

■ Performance of the implementation of each process, including any
trade-offs in the accuracy and computational complexity of any algo-
rithms used.

The implementation will also have to meet various constraints concerning
potential future architectural requirements as well as project constraints
limiting the cost and time taken to deliver any solution. Providing a
highly performant implementation will prove more costly in develop-
ment time, which may not be justified if a less efficient solution can
produce the required results within an acceptable period.

Performance bottlenecks

The physical architecture, design and implementation will introduce
bottlenecks or synchronization points in the system that impact system
performance. Obtaining high performance solutions is usually a balance
between the duplication and decomposition of various calculations and
the communication overhead implied in distributing calculated data.

The decomposition of the system should try to ensure that any
calculations that can be shared are centralized where possible,
provided the additional latency in accessing this information is not
excessive or significantly greater than the time taken to generate it.
These calculations can then be performed once and made accessible to
all interested parties, concentrating processing resources on
performing this task once. Calculations that will only be required by a
subset of users can be performed either using centralized resources or
locally to the client, depending on the availability of resources and any
data bandwidth constraints. Either static or dynamic load balancing of
processing requirements over the available resources should then be
performed to ensure that all resources are fully utilized and perfor-
mance bottlenecks minimized.

Bottlenecks in the transfer of data can be removed by reducing the
volume of extraneous information that is transferred between processes
or ensuring that processes which frequently interact are physically
deployed so that the infrastructure is able to support such interaction.
The volume of data transferred can be reduced by:

181

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

Filtering
Only forwarding the required data between processes. Data that is not
required should be discarded instead of being sent or forwarded.

Throttling and aggregation
In real time systems, data should not be updated at a faster rate than it
can be processed. Doing so will only result in a backlog of updates that
can never be processed in a timely manner and that will overflow
buffers or consume resources. Data may be throttled (its update rate
reduced) or aggregated and then only released based on a number of
mechanisms, ranging from the rate of updates, a defined timer, the
magnitude of any change and so on. Typical examples of this are found
in trading risk systems, where price changes from the markets occur at
too fast a rate to be able to recalculate the risk associated with a given of
source of risk within the organization. Provided the change in magni-
tude of any additional risk arising from these variations is not signifi-
cant, this is not an issue. Other data such as position updates may be
aggregated and then released at defined time intervals. The ability to
aggregate data relies on there being no loss of information when that
data is netted together.

Incremental data updates
Rather than transmitting a complete copy of the updated information,
only the specific changes or deltas are sent.

Caching and data access

Using data caching can further reduce data communication volumes.
This involves the local, in-memory storage of commonly accessed infor-
mation, thereby removing the need to retrieve this from a more remote
location. Caching differs from replication in that only information that
has been requested and recently accessed is stored. Complex caching
techniques can be used to enable data access to this stored information
using retrieval based on some unique identifier. In order to ensure effi-
cient access to this cache of information and to limit the memory
consumption, eviction policies will also need to be defined, which should
be tailored to meet the expected access requirements of different types of
data. Although caching can improve performance, it also introduces
complexities in ensuring that any cached data is current, if the data
contained within the cached data is updated elsewhere in the system.

RISK MANAGEMENT SYSTEMS

182

Data access performance can also be improved by modifying the
representation or encoding of data passed within the system. Data
models implemented within databases are often denormalized in order to
achieve this. This involves the duplication or storage of derived data
within the database in order to reduce the time taken to perform certain
calculations or execute a data query. This increases the speed with which
the data may be retrieved. Denormalization does, however, reduce the
maintainability of the database, making data consistency and integrity
more difficult to ensure.

Precision, throughput and computational complexity

Many risk calculations require the use of numerical methods or highly
complex algorithms. Unlike accounting systems, risk management solu-
tions do not require calculations that are ‘penny accurate’. The risk
manager only requires results that contain all material risks and is
willing to trade accuracy against calculation time. As a result, the risk
management solution should also be able to sacrifice accuracy for
reduced computational complexity. For most numerical methods, this is
achieved by a simple change to the required calculation accuracy or
number of numerical iterations performed. For other calculation
approaches, it may require the replacing of a complex model with a
simpler model that approximates the true solution.

Processing throughput can also be increased at the expense of
increasing calculation latency, so that the perceived time taken to
perform an individual calculation increases, but the volume of calcula-
tions performed also increases. This can be achieved by performing
batch-type calculations that are able to optimize the performance of a
known sequence of similar calculations or the single task of obtaining a
large amount of data rather than a large number of requests for small
amounts of data.

Notes

1 M. Fowler and K. Scott, UML Distilled: A Brief Guide to the Standard Object Modeling
Language (Addison-Wesley, 1999)

2 E. Marcus and H. Stern, Blueprints for High Availability: Designing Resilient Distributed
Systems (John Wiley, 2000)

3 R. Orfali, D. Harkey and J. Edwards, The Essential Distributed Object Survival Guide
(John Wiley, 1996)

183

SYSTEM DESIGN AND
IMPLEMENTATION

ch
ap

te
r

si
x

4 C. Hoare, Communicating Sequential Processes (Prentice Hall, 1985)
5 M. Walmsley, Multi-threaded Programming in C++, (Springer-Verlag, 1999)
6 C. Britton, IT Architectures and Middleware (Addison-Wesley, 2001)
7 R. Elmasri and S. Navathe, Fundamentals of Database Systems (Addison-Wesley,

1989)
8 C. Horstmann and G. Cornell, Core Java2 Volume II – Advanced Features (Prentice

Hall, 2001)
9 See note 4

10 I. Foster, Designing and Building Parallel Programs – Concepts and Tools for Parallel
Software Engineering (Addison-Wesley, 1995)

11 See note 7
12 W. Inmon, Building the Data Warehouse (QED, 1996)
13 B. Jenks, ‘Tiered data warehouse’, DM Review (October, 1997) 54–7
14 J. Rawls, ‘Multitiered data warehouses’, DM Review (June, 1977) 26–31
15 W. Giovinazzo, Object-orientated Data Warehouse Design (Prentice Hall, 2000)

RISK MANAGEMENT SYSTEMS

184

185

CHAPTER 7

Project management

The task of the project manager is to maximize the return or benefit from
the project, while managing any risk and keeping it within defined risk
limits. Basic financial and risk analysis techniques are used in project
assessment1 to quantify the financial benefits and costs of any projects as
a set of future cashflows. These cashflows are discounted using a risk-
adjusted rate of return appropriate for the project, to give an expected
present value of the financial benefit from performing the project.

We can define a simple model for project management that extends
the standard project assessment approach in order to try and quantify
some of the precise benefits and risks associated with delivering certain
functionality. The project manager’s role is then to maximize the
expected present value of the system. A crude expected value of a project
is defined as:

where tvi is the (risk adjusted) time value or discount factor for the system
delivering the benefit bi at time ti in the future. Higher levels of risk will
result in a reduction or adjustment to tvi, as the level of uncertainty in the
delivery of any benefit increases. As a result, greater benefits should be
achieved if higher levels of risk are to be taken.

Time value in the context of managing projects, as with present value
calculations in financial pricing,2 has the characteristic that if t1 < t2 < ... <
tn then tv1 > tv2 > ... > tvn for a given level of risk in delivering the benefits
bi. This decline may not, however, be linear or well behaved, because
certain business or regulatory deadlines can dramatically reduce the value

Value � �
i

tvi bi

of a system benefit if it fails to be delivered by some critical date. The
values assigned to benefits and time value in this equation may also be
highly subjective, with different stakeholders having very different views
on both the benefits and the time value of certain pieces of functionality.
From this model it is possible to derive a number of basic lessons for
structuring and managing projects:

Incremental delivery
Rather than utilizing a big bang approach, make incremental small releases
of functionality that provide benefits to the users. This has the advantage
of decreasing the level of discounting and hence increasing the present
value of the benefit from the system. It also ensures that the benefits are
realized as early as possible, rather than continuing to be part of a subject-
ive expected value calculation and associated with the risk of non-delivery.

Front end projects
When projects are delivered incrementally, deliver as much valuable or
key functionality to the users as early on in the project as possible. This
increases the present value of benefits from the system by associating
them with lower levels of discounting.

Don’t decommission existing systems too soon
Only remove existing desirable functionality when it can be adequately
replaced by functionality in the new system. The benefit from a system will
usually be positive but, if another system is to be replaced with some
benefit from existing functionality temporarily being lost or additional
work around processes needing to be added, then there may be an initial
negative benefit. This will decrease the value of the new system to the users.

Cut your losses
If the project is failing, it is better to restructure it and deliver some func-
tionality than to deliver no functionality at all. Although not desirable, this
is better than letting it fail so that there is no return from the project.

Deliver what is required
Increasing the amount of desired functionality delivered increases the
benefit from a system even if this is delivered later in the project.

The other side of the equation is to manage risk within the project and
ensure that the maximum value is attained for a given level of risk in

RISK MANAGEMENT SYSTEMS

186

delivering the benefit bi at time ti or earlier. This level of risk or uncer-
tainty is also likely to increase the later in the project the benefit is deliv-
ered. As a result, high-risk aspects of a project should be delivered as
soon as possible. Ensuring delivery or prototyping functionality that has
a high level of risk of non-delivery (possibly due to problems with the
associated technology or project skill levels) as early in the project as
possible allows remedial action or project redesign to be performed
equally early, with minimal impact on other (as yet unimplemented)
tasks within the project. This can dramatically reduce overall project risk.

Uncertainty or risk in project delivery will be increased by:

■ Using unproven or bleeding edge technology, so called because it is so
cutting edge that many project managers end up hurting themselves
with it!

■ The complexity of the solution. The more complex something is, the
more likely something will go wrong; a golden rule is to always keep
things as simple as possible.

■ Not using highly trained and balanced teams that have formed into
a cohesive unit. The importance of team dynamics and communica-
tion should not be underestimated.3

■ Using new processes or technology that the team has little experience
of without the provision of training, the building of prototypes or
allowing the team to adequately climb the learning curve.

■ Poor communication or relationships within the project team and
with external stakeholders. Good communication has two benefits.
Firstly, frequent communication and sharing of ideas and knowledge
ensure that misunderstandings within the project are minimized.
Secondly, the state of the project needs to be communicated to the
stakeholders so that their understanding of the expected value from
the project and the actual value that will be realized are kept in close
agreement. If the stakeholders’ view diverges too significantly in
either direction then the project may be cancelled due to the project
not meeting their expectations or their expectations being too low to
justify the project cost.

■ Poor system design, not permitting future benefits to be delivered in
shorter periods of time. With good system design future benefits
will also be associated with lower levels of risk and therefore lower
levels of discounting, increasing the future value of any changes to
the system.

187

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

■ Subjective approaches to project management and cognitive biases
(Chapter 1) so that there is more uncertainty and risk associated with
the current and future state of the project.

THE PROJECT MANAGEMENT PROCESS

The project management process can be broken down into a number of
steps as shown in Figure 7.1. Although the steps are shown as being
discrete, it is not uncommon for many of the stages to overlap. For example,
rapid start projects may require planning to overlap with resource hiring
and the start of some aspects of the project delivery cycle. The decomposi-
tion and timing of tasks will also need to match resource availability.

Projects may also be partitioned into a number of sub-projects, each
of which can be treated as an individual project, but which roll up in a
consistent manner into the final project plan.

RISK MANAGEMENT SYSTEMS

188

Figure 7.1 The project management process

Plan

Resource

Manage

Deliver

Review

Plan

The project plan is an estimate or expectation of progress of the project
over time. Time estimating is difficult and subject to error. Features and
priorities often change and evolve, making the task even more difficult. As
with any large problem, it is best partitioned into a number of sub-projects
or tasks, each of which can be individually estimated and managed. The
project manager should be able to obtain reasonable estimates of effort,
either based on personal experiences regarding task effort and the dura-
tion of common patterns of design or by utilising and working with more
experienced members of the project team who have been involved in
similar projects. Involving more people in this estimation process also
reduces the impact of any individual’s inherent bias or misunderstanding
of the project, ensuring a more complete and well-thought out plan. Plan-
ning is, however, an iterative and inexact process. It is therefore important
to accept that there will be an ongoing need to revise and replan over the
life of the project. This expectation should be built into the project from the
beginning, and expectations managed accordingly.

The detail to which time estimates should be developed will depend
on the size and complexity of the project. Often, it is prudent to plan and
schedule the most detailed levels of work just a few weeks in advance
because of uncertainties of individual team members’ availability, and
actual project progress. This avoids significant effort being expended on
aspects of the plan that are unlikely to add any further value to the
project and will need to be readdressed later.

The individual project tasks should cover the entire project lifecycle,
from initial scope and requirements analysis, through to testing and
deployment. Associated with these tasks will be resources and expected
start and end dates for work on the task. The allocation of resources
should clearly identify responsibility and accountability for completion
of each task. Completion of either single or multiple independent tasks
may also be associated with milestones, which define measurable objec-
tives or deliverables that can be used to provide an unbiased assessment
of project progress.

A task may depend on the completion of a number of other tasks
either internal or external to the project, which should be clearly
highlighted. These dependencies will introduce causal relationships
that will impact the execution of the project, and hence complicate the
risk management of the project. The partitioning of the project should
ensure that any tasks are as self-contained as possible with no circular
dependencies of one task on another; that is, completion of one task

189

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

should not depend on another task, which depends on completion of
some aspect of the first task. Attempting to manage the interdepen-
dency and risk associated with such complex dependencies can be
extremely difficult.

One of the key issues of project planning is defining the sequence in
which work should be accomplished. At a high level, this sequencing
determines the overlap of the major work activities and how resources
and skill sets must be deployed, especially if specific skills are required
to complete certain tasks. At a lower level, it determines the sequence
in which functionality will be produced and integrated within
the project.

This sequence should aim to reduce the risk and enhance any value
delivered by the project, subject to any project scheduling constraints
and tasks dependencies, as discussed previously. The aim of the plan-
ning process is to produce a project plan where completion of the high-
lighted tasks will result in a system which meets all the requirements
and which can be completed using the available resources. Once the
project plan has been produced it should be discussed and signed
off by all the appropriate stakeholders. This will define expected
project timescales as well as the required human and physical
resources. This plan will then set both the project team and the external
stakeholders’ expectations.

Resource

The most carefully constructed plans are not sufficient in themselves to
guarantee success. Plans do not complete projects – people do. As
a result, good team dynamics, open communication, effective organ-
ization and man management skills will be crucial for success. Organ-
izing and managing people effectively will pay dividends in terms of
increased productivity, quality and likelihood of project success. Once
the project plan has been created, there will be an estimate of the
resourcing requirements needed to deliver the project in the permitted
time. Once these resources have been acquired, they can be assigned to
various tasks in the plan. This assignment must enable the ordering and
timing of the tasks in the plan to be achieved without overloading any
individual resource while still being able to meet any constraints
concerning their availability. This process is known as levelling. The
matching of resources to tasks in the project plan should result in a
number of SMART4 objectives:

RISK MANAGEMENT SYSTEMS

190

Specific
The objective must be specific and clearly explained so that completion of
the task is well defined. Specific well-defined tasks will depend on the
quality of the requirements gathering and analysis process to remove any
ambiguities or inconsistencies.

Measurable
It must be possible to measure progress and decide when the task
is complete.

Achievable
The task must be achievable for the assigned person(s) using their existing
skill set. If it is not, training must be provided and allowances made for
unfamiliarity with the chosen technology or problem domain. The
resource(s) will then take responsibility for completion of this task and
must therefore be empowered to be able to perform any required work.

Relevant
In order to motivate the team members, tasks must be relevant to them
and fit in with their career goals. Keeping goals relevant will require
career development planning as well as coaching and counselling.

Timely
The time permitted for the task must be achievable within the project
time frame by the person resourced to complete the task.

The organization or external employment conditions are likely to
impose a number of constraints on the project manager when resourcing
a project; it may need to be staffed using existing staff with training
provided if necessary. In order for the project to be properly resourced, it
is therefore important that the requirements and tasks are sufficiently
well understood to be able to match the right tasks to the right available
resources. Any training requirements should also be included within the
project plan, as they will impact the timing of when a resource can be
assigned productively to a task.

Training for the project should not only ensure that the resources have
the right skills to successfully complete the assigned tasks but should
also provide project orientation, highlighting any project-specific stan-
dards, processes or skills. This is also the point at which effort should be
made to put in place communication and project monitoring structures
and to start team-building exercises.

191

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

Once the plan has been resourced, time and effort estimates should be
refined to reflect the actual skill and productivity levels of the resources
assigned to each task. At the end of the resourcing stage of the project, all
the project infrastructure should be in place, the project team and struc-
ture established. All aspects of the plan should be resourced and all team
members orientated with a full understanding of the expectations placed
on them.

Manage

Project management is essentially the process of communicating, identi-
fying and solving problems in the execution of the project plan (Figure 7.2).
Potential and actual problems are identified by measuring and monitoring
progress and performance against the project plan. This should be supple-
mented with qualitative feedback from the individual team members. The
project plan will contain a number of sources of risk, which will be
impacted by various events both internal and external to the project that
will result in an outcome other than that expected. Additional risks will
arise as the project evolves and known risks may become greater or signifi-
cantly different than expected.

RISK MANAGEMENT SYSTEMS

192

Figure 7.2 The project execution process

Refine risk

mitigation plan

Refine project

plan, work

estimates and

resourcing

Iterate to re-level plan

Completion

of project

Iterate until completion

of project

Monitor and

measure project

progress

Co-ordinate and

communicate

project progress

Address issues

The reality of project management is that events and timescales
described in the project plan are unlikely to be achieved as expected.
What is important is that progress is monitored so that it is known when
expectations are not being met and why this has occurred. It will then be
possible to take corrective action and reassess the ongoing risk within the
project. All this requires a baseline against which actual project progress
and requirements can be compared, which is provided by the project plan.

Monitoring Progress and Refining the Project Plan

In order to measure project progress, activities must be monitored to
provide an accurate view of what has been achieved. As a result, the process
should avoid any cognitive biases and should not permit developers to
provide potentially optimistic assessments of progress or percentage of task
completed. Progress should instead be measured as objectively as possible
and these measures should be defined at the start of the project. The easiest
way to achieve this is to ensure that there are objective measures for project
progress covering reasonably short time periods, typically defined by mile-
stone events indicating the completion of various tasks. These milestone
events may be the provision of functionality that can be validated by
defined tests, or may require independent review of the task by other team
members. Progress can be defined in a number of different dimensions,
each of which will give a different perspective on the project:

Start and completion of tasks and milestones on or before the dates in the
project plan
Any differences will require modifications to the plan and any slippage will
require corrective action if the project is to meet any timeline dependencies.

Actual effort (in man hours) and resources involved in completing each task
Although achieving milestone dates is important, this may be at the
expense of excessive work effort from those involved, which will hide
either inaccurate effort estimates or variances in the availability or capa-
bility of certain resources. Although such activity may be acceptable in
order to address short-term plan slippage or lack of resources, if it is
performed over long periods of time it will overload some resources and
result in a decrease in their productivity. It is therefore important that this
should only occur with the knowledge of the project manager, who
should assess the impact on risk within the project and be able to take
appropriate action.

193

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

Quality of any deliverables from each task
Not only should each task result in the required deliverables, but these
should meet specified minimum quality requirements. Quality may be
assessed in terms of adherence to coding standards, forward engineering,
maintainability of code structure or conciseness and completeness of any
documentation. It will typically require more qualitative review tech-
niques involving other project team members.

Having measured project progress, any discrepancy between what
was expected and what was achieved will require further investigation
and corrective action to be taken. This variance may arise from:

Dependencies on other external projects
The plan should be modified to accommodate any delay in external
projects that impact the project. Essentially this task can only minimize
rather than remove any impact. Any changes to the plan should be
discussed and communicated to all the relevant parties (including the
project’s stakeholders and team members, as well as the external project
team responsible for any delay), so that expectations can be readjusted
and any implications clearly understood by all involved.

The way the plan is executed
The development process, or team or individual performance may not be
as expected. This may be due to productivity issues, excessive effort in
over-engineering aspects of the solution or performing tasks that are not
required. Team member evaluations, process reviews and feedback
should be used to identify the underlying cause.

The project plan itself
The estimates in terms of the availability of resources, complexity of
tasks, or the completeness of the task list may be inaccurate. Incom-
pleteness of the task list can arise from either inadequate requirements
gathering or requirements changes and ‘scope creep’, where new require-
ments are added by the stakeholders during the project. Estimates will
also change due to unforeseen technical challenges. Any project member
should be entitled to initiate changes in the plan estimates, provided
there are good reasons to do so. These changes must be communicated
as soon as possible, so that the plan can be kept up to date. Any impact
on delivery dates, along with the reasons for any change must be clearly
communicated in order to manage expectations.

RISK MANAGEMENT SYSTEMS

194

If the initial plan estimates were inaccurate before commencement of
the plan, slippage will be a regular occurrence. Estimating is an imperfect
science so being able to spot slippage early on and identify the reason for
it is crucial. It is important to ‘step back’ and reassess the entire project
plan and take significant corrective action rather than letting the slippage
continue, as this will only reduce the quality of information used to eval-
uate project progress and will increase project risk.

In order to bring a project back into line with the plan, the drivers for
a project must be reviewed and addressed (Figure 7.3). These drivers are
interrelated in that a change in one will impact the others:

Resources: The skilled people performing the work, their productivity,
as well as the things they require such as workspace, PCs, phones and so
on. Increasing the number or quality of resources can reduce the time
taken to complete the project, enable additional functionality to be
included (in order to enhance scope) or improve project quality.
Improving resource motivation is also a low cost approach to improving
resource productivity.

195

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

Figure 7.3 The interrelationship of the four main project drivers

Scope

Quality

Time

Resources

Scope: What is to be produced, generally specified or defined in terms of
tangible deliverables. Increasing project scope will require additional
resources, a reduction in quality or the project timeline to be extended.
The impact of continuously changing scope should not be underesti-
mated and can result in continuously changing plans and requirements,
leading to project failure. Proposed changes should be tightly managed
and the implications for the project clearly explained to all the relevant
stakeholders. Reducing scope in a troubled project can be used to deliver
functionality sooner or improve project quality.

Time: The timeline as specified in the project plan. If the project is behind
schedule, and the project manager wishes to deliver the remaining tasks in
a shorter period of time, then the implications are to use more resources,
reduce scope or to sacrifice quality. Sacrificing quality is the least desirable
choice since it can have major repercussions on the future of the project.

Quality: The fitness for purpose of the system, and its ability to be
extended and modified. Reducing quality will have major implications
on future enhancements to the project and should never be sacrificed in
core design areas.

The interaction of these drivers can be more complex than is implied in
Figure 7.3. For example, repeatedly increasing the numbers of resources to
try to ensure more rapid delivery of a project does not always have the
desired impact and can result in even greater project slippage.5 It does
however provide a starting point for considering the implications of
various project management decisions.

Co-ordinating and communicating project status

The importance of open communication cannot be overemphasized. It is
important that expectations of project progress are managed and that
current project status is communicated both internally and to project
stakeholders. Just as with risk management, the aim is for no significant
unexpected surprises. Status meetings must be held on a regular basis to
review progress. Any developer should also be able to call a meeting at
any time to discuss issues related to the project, and obtain assistance
from fellow team members. Status reports should also include infor-
mation concerning tasks completed during this reporting period, along
with expectations for the next one.

RISK MANAGEMENT SYSTEMS

196

Traffic light or red, amber, green (RAG) reporting is a high-level qualita-
tive performance and risk indicator that is used in many projects. In a RAG
report, the entire project, or well-defined units of it are each given a red,
amber or green status. Green indicates that there are no problems with the
piece of work and progress is being made as expected in the project plan,
whereas amber acts as a warning to indicate that problems may be arising,
which may result in the project not meeting its requirements (in terms of
time, cost, quality and risk). A red status means that some key milestones
either have been missed or will be missed unless corrective action is taken.
The layout of a RAG report is similar to that of a risk report. The key results
of the report are clearly laid out at the beginning, followed by a brief
description that provides context to the report (Figure 7.4).

Issues will arise when multiple parallel development teams or indiv-
idual developers work as part of a single project. These issues may be
architecture, schedule, business or resource related. To ensure that the
teams make effective progress with their work, as autonomously as
possible, effective co-ordination will be required by either the project
manager or a special team that provides leadership and co-ordination
between the groups. This team’s remit is to provide high-level manage-
ment of the process, ensuring that the project team operates as efficiently
and predictably as possible. It will also assist the project manager in
deciding and implementing any remedial action that may need to be taken.

Risk mitigation

Throughout the project, existing risks should be continuously monitored
and new risks identified and analysed. As mentioned in Chapter 1, for
each risk (within the project plan) there are three alternatives:

1. To accept the risk but do nothing for the moment. The plan should
however be stress tested to see what impact the associated events may
have on the project.

2. To remove the risk by taking a contingency approach. Alternatives should
be devised to deal with the eventuality of this risk being realized. This
may be through undertaking (lower risk) backup tasks that could also
address the requirements or developing alternative strategies to work
around this situation should it occur. Which one is undertaken will
depend on cost and the risk appetite of the project, together with the
level of risk identified (quantified in terms of impact on the timescale,
cost, deliverable functionality or quality of the project).

197

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

RISK MANAGEMENT SYSTEMS

198

Project Status Report

For Period Ending 30/6/2003

Program Name: RiskEngine Program Manager: Martin Gorrod

Project Number: 12345

Scheduled Completion: 31/07/03

Forecasted Completion: 15/07/03

Summary
The RiskEngine Program is ahead of schedule and should, subject to no unfore-
seen issues, be completed two weeks earlier than scheduled in the project plan.
The major risk impacting this project is that the Data Project will not be deliv-
ered on time. A contingency for addressing this will be to use the surplus effort
to build a direct link from the RiskEngine System to the old Data System.

Quality
The initial expectations of the project are being met. This can be evidenced by:

■ System response times exceed those specified by 50%

■ 90% of acceptance tests are currently being passed

Risk
The primary risk impacting the RiskEngine System is the delay in the delivery
of the new Data System. Although the RiskEngine System is likely to be deliv-
ered ahead of schedule, it cannot be implemented until the new Data system
is available. The suggested action to mitigate this risk is to build a link to the
old Data System that can be replaced when the new Data system is available.
This will enable earlier implementation of the RiskEngine.

Achievements during this reporting period

The VaR engine has been fully implemented and passed integration tests.

Expected achievements during next reporting period

Completion of the reporting module to provide ad hoc reporting capabilities.

Summary
Quality Risk Scope Resources Time

Red � � � � �

Amber � � � � �

Green � � � � �

Figure 7.4 Example of an RAG report for project progress

3. To remove or reduce the source of risk. This may be by replacing inexperi-
enced team members on critical sections of the project with others who
are more experienced, modifying tasks to take a lower risk approach or
developing prototypes to provide a feasibility study in order to further
investigate any potential risks. Issue logs can also be used to highlight
key sources of risk within the project that require rapid resolution.
Resolution of these issues should be assigned to key project personnel
and include the correct level of stakeholder involvement, if necessary,
with resolution dates and a well-defined escalation policy. It may
require forming small ad-hoc teams of experts (so called ‘Tiger Teams’)6

to quickly study significant issues and perform specific analyses that
were not included in the initial requirement gathering and analysis.

Many of the techniques discussed in Chapter 3 can be applied to
assess the level of risk within the project plan. In particular, the tech-
niques of KRIs, stress testing, scenario analysis and decision trees are all
applicable. Some of the most common KRIs are:

■ Tasks taking longer than expected resulting in delayed project comple-
tion and inefficient resource allocation

■ Inability to complete the task as specified due to ambiguities in or
incompleteness of requirements, which requires re-specification of the
task and frequent changes to the resulting analysis.

■ Loss of key resources

■ Changes to or incorrect implementation of requirements

■ Scope creep resulting in constantly extending project deadlines.

Anti-patterns can be also used to identify projects that are in crisis.
These are common features or patterns observed either in architectural
design, software development or the management of projects that
commonly lead to significant constraints in any delivered solution or
project failure.7

Deliver and review

The level of difficulty involved in obtaining acceptance of project deliv-
erables is usually inversely proportional to the degree of stakeholder
involvement and specification of any requirements, together with the

199

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

level of expectation management during the project. Inadequate
involvement of key stakeholders or poor specification and expectation
management will only result in problematic acceptance. Once the
project has been delivered and this stage of the project is complete, it is
important to review and reflect on where the project succeeded and
where it may have had shortcomings.

All team members should be included and asked to provide feed-
back on which parts of the process succeeded and which failed. This
period of reflection should be non-judgemental, its aim being purely to
provide feedback for improving the process, rather than to apportion
blame. It should identify underlying causes so that transferable lessons
concerning the entire project lifecycle can be learnt and applied to other
projects. The primary objective of project management is to meet or
exceed the expectations of the project sponsors. These expectations are
typically expressed within the following categories:

■ Functionality: The project delivers the required functionality.

■ Quality: The project meets the stakeholders’ expectations in terms of
defect levels and extensibility/maintainability of system.

■ Cost: The project delivers the desired functionality and quality at the
anticipated cost (that is, within project budget).

■ Schedule: The project delivers agreed system releases within the antici-
pated time frame. This high-level schedule should be agreed before
development of the system.

■ Project Risk: The level of risk associated with achieving the above is at or
below the level expected or specified by the stakeholders of the project.

Evaluation of the process should compare the above with what actu-
ally occurred during the project, covering all the iterations of the project
plan. Having determined any variances, the cause of these should be
investigated and assessed. Typical questions that will arise from this
process will include:

■ Do variances and contingencies reflect tasks that were omitted?

■ How do the estimating guidelines compare with the level of effort
expended?

RISK MANAGEMENT SYSTEMS

200

■ Were the requirements adequately detailed, comprehensive and free of
superfluous information?

■ Could the development process be standardized, streamlined or other-
wise made more effective?

■ Are there ways to reduce future learning curves?

■ Did the project identify and implement continuous improvement
opportunities?

■ How effective were the risk management process and any contingency
measures?

■ How well were expectations managed?

REQUEST FOR PROPOSAL (RfP) PROCESS

The decision to outsource

Whether an organization decides to develop a system in house or to
outsource its provision will depend on a number of factors. This decision
is likely to depend on:

■ Importance of maintaining strategic control and whether the
system to be developed represents a core competency for the
organization.8

■ Total cost of developing internally against the total cost of
outsourcing, (including any legal costs and ongoing support and
licensing costs) and how this relates to differences in the risks associ-
ated with each approach.

■ The relative risks, both strategic and delivery, in outsourcing against
developing internally. The change in operational risk arising from
the transfer of internal development and support to an external
vendor can be difficult to quantify but is an important aspect of
any decision.

For many financial institutions, software is often not seen as a core
competency or activity. As a result, driven by a desire to both reduce
costs as well as access external specialized skills, many banks have
moved towards outsourcing some of their technology operation,9

201

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

purchased software products/toolkits or engaged external consultancies
or software vendors to develop a system that meets their requirements.
The recent focus on operational risk has also highlighted issues in
managing risk inherent in the delivery and operation of complex tech-
nological systems and encouraged organizations to decide whether
external third party providers can manage this more cost effectively
and efficiently.

If the decision is made to outsource, the organization must ensure that
the most appropriate supplier is selected. The aim of the RfP is to
formalize the selection of the most appropriate supplier to deliver the
required functionality in a competitive and open manner. The process
formally notifies vendors that budget is available for this work and that
a formal contract will be awarded at the end of the competitive proposal
process. By clarifying these key (to the supplier) requirements, vendors
should expend greater effort in the process than if it was just an initial
inquiry or interest. The formalization of the process also ensures that all
suppliers respond in writing rather than relying on informal discussion.
These written responses can then be used as a basis for contractual
negotiation.

The RfP supplier selection process is essentially an optimization
problem where the supplier’s ability to meet requirements in different
dimensions is combined into a single score. The highest score can then
be used to select the supplier that addresses the requirements in the
most complete manner. This selection process may, however, be
subverted by political issues and lobbying which will lead to a sub-
optimal decision.

The RfP process will often require further clarification of actual
requirements together with some hard negotiating on all aspects of the
project. Any information provided by the organization issuing the RfP
should therefore not weaken its negotiating position later in the process.
Providing an RfP often dramatically extends the time required to procure
systems and services. The benefits of a hopefully optimal and objective
decision-making process arising from formalization into an RfP should
however offset these costs. The process should begin in the same way as
any other software project (Chapter 5), requiring an project proposal
together with perhaps some initial requirements and feasibility analysis.
At this point the processes will diverge. Whereas the analyst would then
focus on converting these requirements into a system requirement, the
RfP process becomes one of succinctly stating these requirements in a
requirements outline.

RISK MANAGEMENT SYSTEMS

202

Initial supplier selection

Before the RfP has been produced, it is important to gather information
regarding the suppliers who are likely to be able to address the require-
ments and be willing to submit proposals. For a product-based solution,
the RfP should be structured so that it utilizes open questions to discover
the capabilities of the potential products and does not preclude possible
suppliers by, for example, defining precise requirements that few or no
products can address. If a more tailored approach is taken, through the
use of toolkit providers and/or service-orientated firms that develop
customized solutions, the requirements within the RfP can be more
precise, defining exacting minimum requirements. The fundamental
difference in approach between the purchase of a product versus a
tailored solution means that this decision should be made before issuing
the RfP. It will be difficult to compare vendors who utilize such a radi-
cally different approach using a single RfP and set of metrics. It is also
unlikely that a strategy demanding a very specific customizable solution
will be satisfied by the purchase of a product. The steps in this process
are therefore to:

1. Identify possible suppliers: Various consultancies can perform this task,
given general criteria and requirements.

2. Obtain general information regarding the supplier: This will involve
understanding the supplier’s capabilities, culture, business and tech-
nical strategy (and in particular how this strategy relates to that of the
organization issuing the RfP). The aim should be to ensure that any
vendor selected has a strategy and culture that is complementary to
that of the organization.

3. Typical cost of a supplied solution: Most projects have some financial
constraints so there is little point in selecting a vendor who
is unlikely to deliver a project that costs less than the available
budget.

4. Perform initial due diligence work: This may include informal discus-
sions with clients of the supplier and viewing examples of their work
at exhibitions or in initial sales meetings.

The steps above should provide enough information to determine
which vendors are likely to be capable of addressing the RfP and should

203

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

be included in the initial supplier list. This decision should also include
factors such as:

■ Geographical location and ability to provide timely support

■ Experience in the problem domain

■ Reputation and past experiences in dealing with the supplier

■ Size of supplier

■ Quality of work and any specific internal project or software processes
that are supported

■ Financial stability of vendor.

At the end of this process there should be a short list of three to four
companies that should receive the RfP. Selecting too many vendors
can make managing the interaction and selection process excessively
time consuming and expensive. Selecting too few means that the process
is likely to become uncompetitive and result in too limited a selection.

RfP outline

An RfP should provide the potential suppliers with enough information
to create a proposal that will address all the concerns of the organization.
It should contain:

Organizational overview
To provide the supplier with an organizational context and reason for
issuing the RfP.

Assumptions and agreements
To highlight any constraints the proposal must meet and to ensure inap-
propriate proposals (such as those using technology not supported within
the organization) are neither delivered nor considered. This section should
also highlight any proposed penalty clauses or other legal restrictions.

Required proposal format
This should define the format and also ensure that proposals from
different vendors can easily be compared. Defined tick lists and tables are
often specified in order to simplify this.

RISK MANAGEMENT SYSTEMS

204

Requirements
This should state the objectives of the RfP process, highlighting any
project phasing requirements, prototyping or milestones that will need to
be achieved, as well as the key functional requirements and any
supporting training or documentation that will be necessary. These
should be specified in sufficient detail to preclude misunderstandings
and reduce the level of further clarification required. The statement of
requirements should build on any functional prioritization, as well as
adding any technical or process-related requirements. The basis of any
cost calculations to be provided by the vendor should be clearly defined,
specifying which costs should be included and excluded and how these
costs should be broken down. Example areas of requirements and
comments can be found in Tables 7.1 and 7.2.

Required proposal deliverables
Highlight the key sections that need to be included in the proposal. This
may include information concerning the nature and costing for any
engagement, company background as well as the specific development,
quality assurance and testing approaches.

Additional documentation or system demonstrations required
This should provide supporting evidence and detailed information, if
available, for any proposal deliverables.

Request for references
Vendor clients supplying references should have similar culture and
requirements to those being specified in the RfP. This may however be
problematic as many financial organizations will not wish to assist a
potential market rival in their selection process. Any references should be
from both recent and long-standing clients, in order to obtain different
perspectives on the likely supplier/client relationship.

Who to submit the proposal to and contact point for RfP clarification
This person will act as a gatekeeper for the process, controlling the
dissemination of information to the suppliers.

Summary of metrics used as basis for award of contract
The process for awarding the work should be as transparent as possible
and clearly communicated to all potential suppliers. The key selection
criteria as well as a metric for combining the degree to which the supplier
can address the users’ needs in each defined requirement should be spec-

205

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

ified, including other factors such as quality, cost, delivery and support
and strategic risk (covering the financial soundness and past experience
of the vendor). This metric will implicitly quantify acceptable trade-offs
within the project, although the precise details of this are unlikely to be
made known to the suppliers.

The increasing use of highly configurable or customized development
solutions can dramatically complicate the selection process and can
result in a perfect fit to requirements but with higher levels of delivery
risk, strategic/enhancement risk and cost.

RISK MANAGEMENT SYSTEMS

206

Table 7.1 Example checklist of questions regarding a vendor’s risk
management solution

Functionality Comments

Risk measures Methodologies and measures implemented

Instrument coverage Ability to handle structured products and other OTC
derivatives and new instruments

Supported workflow Do the screens and functionality support the trading
style characteristics of the organization?

Integration Ability to integrate into existing infrastructure

Performance Processing volume and latency

Calculations Quality and complexity of models implemented

Reporting Capability and ability to customize

Regulatory Ability to address regulatory needs

Reliability Mean time between failures

Robustness Availability of hot backups or standby systems

Scalability How does the system scale with the addition of
more hardware (horizontal and vertical scalability)?

Customization What aspects of the functionality, screens and
interfaces can be customized?

Quality of support What are the service level agreements?

Cost How is the product licensed; by number of users,
locations, asset classes. What limitations are there
on future maintenance costs and what are the likely
integration and installation costs?

Upgradeability Commitment of vendor to constantly improve
software and match your business and technical
strategy

Timeline
This should highlight, as a minimum, the timeline for the RfP process,
including the submission deadline and when any decision on supplier
selection will be made. It should also outline other information such as
when legal discussions will begin, the project start date and when any
key milestones must be achieved. This will be important in assisting
vendors with their resource allocation and determining whether they
would be capable of entering into the process. Modifying the date a
decision is to be made or varying the start and end dates of the project
can seriously complicate this process for the supplier. It is therefore best
to ensure that any time schedule is kept to. If this is not possible, all
vendors should be promptly informed of any change, so that the impli-
cations can be factored in as quickly as possible.

The aim of the RfP process is to obtain a number of competitive and
distinct approaches to addressing any requirements and meeting various
constraints. The RfP should be structured so as not to act as a barrier to
obtaining this information or encourage inappropriate proposals to be
provided that will not meet unspecified requirements, and therefore be
immediately rejected.

If the RfP contains confidential information, this should also be indic-
ated in order to ensure that it does not become general knowledge within
the marketplace. Generally, a non-disclosure agreement (NDA) is signed
by all the parties involved in the process to ensure this does not occur.

207

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

Table 7.2 Example checklist of questions regarding a market data
vendor’s solution

Data Comments

Instrument coverage Is it sufficient for current and future needs?

Quality What are the source and quality of any market
information?

Integration Ability to obtain and use data in format provided

Support What are the service level agreements?

Cost How is the data licensed? Number of instruments,
number of users accessing the data, number of
geographical locations?

Commitment to continue and Commitment of vendor to cover current and future
expand available data instruments required

Communication between organization and vendor

Any communication between the organization and the vendor should
be controlled in order to ensure that no supplier obtains an unfair
advantage in terms of understanding of the proposal decision process.
This may be achieved by formalizing this interaction and ensuring any
disclosed information is distributed to all potential suppliers. Typically
this process is more informal, but must be managed to ensure that the
decision process is not subverted. How much information the organ-
ization chooses to divulge, especially in the early stages of the RfP
process, is up to those involved. As mentioned earlier, it should provide
sufficient detail to allow the supplier to provide the required infor-
mation, but not so much that any advantage the organization has in
later negotiations is lost.

Once the RfP deadline has been met, an experienced and diverse
team of experts should validate the proposals, providing different
perspectives and views on the responses. This will require technical,
business and support knowledge in order to fully access the implica-
tions of any proposal. The evaluation process should not penalize a
vendor simply because they have provided a more detailed response to
a requirement while another has left its statement more ambiguous or
omitted important detail. Any such points should be clarified with the
supplier to ensure that an objective fair comparison can be performed.

Managing the supplier relationship

Many organizations end the RfP process by providing feedback to all
unsuccessful suppliers on why they were not selected. This has the
advantage of ensuring that the process is seen as a fair and unbiased one,
as well as maintaining good relationships with each supplier involved in
the process. This may be important in the future when further RfPs are
produced or if contractual negotiations with the initially selected
supplier fail and another has to be used.

The contractual stage is when expectations between the vendor and
organization are defined and clarified, with fine-tuning of aspects of the
supplier’s proposal. This will explicitly define each party’s rights and
liabilities throughout the engagement, legally clarifying issues such as
support levels, pricing and payment schedules (based on various deliv-
erables and licensing terms), warranties, dispute resolution, termination,
confidentiality, intellectual property ownership, and so on. The contract

RISK MANAGEMENT SYSTEMS

208

may include penalty clauses or bonuses for attaining target levels, in
order to motivate the supplier throughout the engagement. As a result, a
number of metrics will need to be defined in a ‘balanced’ manner
(Chapter 1) in order to effectively manage the delivery of the solution.
The pre-contractual negotiation is essential in setting the basis for what
may be a long-term relationship.

Any engagement will result in a number of risks and these should be
identified and mitigated if necessary. Managing these risks will require
ongoing monitoring and management of the relationship, as with any
other project. Fundamentally, any client/supplier relationship will need
to go beyond clarifying how functionality and support are packaged and
delivered; it will require a much closer rapport. It is therefore important to
ensure that the manner in which the organization and supplier will work
together both now and in the future is agreed as early in the process as
possible. This should address how new requirements may be accommo-
dated or how tailored functionality can be added to the solution, either by
the vendor or by another third party. One of the key risks of any external
relationship is how differences in the strategic direction of the two
companies will be managed and any implications for the organization of
vendor tie in.

Working with a vendor is an ongoing relationship, which will
hopefully last a significant period of time and needs to be managed as
such. As a result, it is important to ensure that the internal staff for the
project work as a team with staff from the supplier. Project risk can be
significantly increased through the addition of internal and external
dependencies. Monitoring project progress can be complicated and
impeded by communication issues across company boundaries and it
should be anticipated that both the client and the vendor will at some
point either be late or cause problems with the delivery or installation
of the system. Ensuring there is an appropriate mechanism to resolve
any such issues will be critical in preventing damage to the relationship
with the vendor. Any such damage will only make project success even
more unlikely.

Fixed and variable priced contracts

The proposal from a vendor may be fixed priced, variable priced or a
combination of the two (for example based on a fixed price for a core
product with integration costs based on the amount of effort expended).
Fixed price contracts involve project risk transfer in that a defined cost is

209

PROJECT
MANAGEMENT

ch
ap

te
r

se
ve

n

charged for the work irrespective of the actual cost incurred. As a result,
vendors are likely to include a pricing premium to compensate them for
taking on this risk. Because of the difficulty in quantifying software
project risk, this premium can be significant if the requirements are not
viewed as being well defined. Payments for these types of projects will
follow a payment schedule defined in the contract, which should be asso-
ciated with project milestones or deliverables.

Variable priced contracts are typically based on time and material costs
incurred by the supplier. They require the client to pay for actual charge-
able costs incurred by the supplier on a regular ongoing basis until
completion or termination of the project. This exposes the client to the cost
implications and uncertainty associated with the project. As a result, these
types of projects need to be closely monitored, with realistic estimates of
likely costs obtained before the start of any work. A project plan must be
used to monitor progress and highlight variances on an ongoing basis.
The separation of user and delivery team across two different companies
can act as a significant barrier to monitoring project status, which can
result in some unpleasant and costly surprises to the client.

Notes

1 R. Brealey and S. Myers, Principles of Corporate Finance (McGraw-Hill, 2002)
2 J. C. Hull, Options, Futures and other Derivatives (Prentice Hall, 1997)
3 D. Egolf, Forming Storming Norming Performing: Successful Communications in Groups

and Teams (Writer’s Club Press, 2001)
4 R. Templar, Fast Thinking Appraisal: Work at the Speed of Life (Prentice Hall, 2000)
5 F. Brooks, The Mythical Man-month: Essays on Software Engineering (Addison-Wesley,

1995)
6 S. McConnell, Software Project Survival Guide (Microsoft Press, 1998)
7 W. Brown, R. Malveau et al., Antipatterns: Refactoring Software, Architectures, and

Projects in Crisis (John Wiley 1998)
8 R. Grant, Contemporary Strategy Analysis (Blackwell Business, 1995)
9 Finextra, ‘Barclays outsources desktop technology to EDS’ Finextra.com (4 June

2003)

RISK MANAGEMENT SYSTEMS

210

211

CHAPTER 8

Quality management
and testing

Just as sequences of events can lead to losses from sources of risk within
the organization, losses due to defects in software occur because of a
sequence of interactions with the system that uncovers those defects. The
aim of the testing process is to increase the expected mean time between
failures as well as reducing the potential loss that arises when a failure
occurs (the return aspect of the risk/return equation). Reducing the magni-
tude of any loss may necessitate adding functionality that ensures poten-
tial sources of risk are discovered and resolved as soon as possible. This
can be achieved by performing system reconciliations or monitoring
certain KRIs within the system.

This leads to two approaches to removing defects from within soft-
ware. The first is to focus on the events and generate event sequences to
validate that the software behaves as expected (that is, there is no uncer-
tainty in outcome). If the outcome is not as expected, the software is
debugged to discover the source of that failure. The second approach is to
focus on the sources of risk and remove them from the software, without
considering the sequence of events that could result in failure.

The first strategy is the traditional approach to testing; the tester
develops scenarios and stress tests that ensure the software operates
correctly when dealing with a range of frequent event sequences, as
well as unlikely sequences of events. The low probability event
sequences will often focus on the handling of error scenarios arising

from unexpected user interaction, or unlikely sequences of system
interactions or surrounding infrastructure failure. The second
approach moves us into techniques and processes for developing
robust and error-free code1 as well as formal software specification and
verification.2

THE SOFTWARE TESTING PROCESS

Testing is often seen as the final step in the delivery process. Its aim is to
ensure that the delivered software meets the specification for the system
and is ‘fit for purpose’. Treating testing as a separate and final stage in the
software development lifecycle can, however, result in a number of unde-
sirable surprises at the end of a project when delivery and deployment of
the system are expected, not delays arising from having to correct the
software. By separating testing from the development and requirements
process, developers often do not feel accountable or responsible for this
aspect of the project. Instead, testing should be seen as an integral part of
the software development process with an important role to play
throughout the project lifecycle. Frequent and ongoing testing will
ensure that:

■ Functionality and specified requirements are implemented correctly.

■ An objective assessment of progress is produced that can be linked to
milestones within the project plan; completed and missing function-
ality is clearly identified by the successful or unsuccessful execution of
the tests.

■ Regressions in the development process are identified. This occurs
when ongoing development causes previously implemented function-
ality to fail.

■ Inconsistencies between specification and implementation are
detected.

■ Unspecified behaviour is highlighted early in the project.

The aim of the testing process is to discover software defects before
software delivery and deployment. These defects may arise from bugs
(which are the incorrect implementation of correctly understood
requirements), from correctly implementing misunderstood require-

RISK MANAGEMENT SYSTEMS

212

ments or from missing functionality that has not been included in the
development plan. Detecting the results of correctly implementing the
wrong functionality can be difficult if the software is not independently
verified and tested, based on the actual requirements rather than an
interpretation of them.

Making the testing process integral to the development process also
shifts the resourcing of this task to earlier in the project, and enables
the requirements for testing to be closely integrated with (and to
extend) the requirements and specification process. This reduces the
likelihood that tests will be derived from misinterpretations of the
requirements. It also enables acceptance tests to be defined upfront
before implementation so that they do not distract or distort the devel-
opment process.

Completeness of testing

The goal of the testing process is to ensure that all code paths are
verified as supporting the required functionality. Essentially the
problem is one of defining a minimum spanning set of test scenarios
that include all possible sources of failure or error. To achieve this aim is
impossible for all but the simplest of systems or sections of code.
Instead we revert to a risk-based approach to testing. Just as with any
risk management strategy, managing risk within the software process
should focus on the prevention of high probability failures and the areas
of the system (that is, sources of risk) where failure can result in large
or catastrophic losses. These can be determined and visualized using
techniques such as risk assessments or by producing a probability/
impact matrix.

The development process shows us that when software is written the
same code paths are often used to handle similar operations. There is
therefore no benefit from repeatedly testing a piece of code with similar
inputs. How we define what is similar will require some level of under-
standing of the implementation in order to appreciate when different
execution paths are likely to be utilized. This will tend to be at the
extreme range, boundary levels or with unexpected inputs. For example,
when testing the payout of a financial option,3 the tester should use price
inputs that are below, at and above the strike price as well as extremely
high or low input values. Unexpected inputs may include entering nega-
tive prices into the system.

213

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

Testing concentration

Since the aim of testing is to try to discover defects in the software, the
more ways there are for a piece of software to fail, the more tests there
should be. The level of testing for a section or unit of code should there-
fore be comparable with the number of execution paths in that code. As a
result, thin client applications will require less testing than fat client
applications. Similarly, software that maintains an internal state that
changes its behaviour will require greater testing than one that does not,
due to the larger number of possible execution paths.

Performance testing should be used where the area of functionality is
likely to be a performance bottleneck. Potential performance bottlenecks
should have been identified as part of the architectural design but can
also be highlighted through the use of performance monitoring tools.

Measuring software risk

The risk management techniques of Chapter 3, which are used to assess
operational risk, can also be used to measure risk in the software devel-
opment process. From a testing perspective, these risks will arise because
of the inability of any software development process, like any human
activity, to not fail in some manner at some point in time. Risk therefore
arises from the inability of a software process to deliver bug-free code that
exactly meets the system specification. These failings will then lead to an
unexpected loss arising from the unexpected behaviour of the system.
Key risk indicators are often used to highlight potential risk or failure
within the software development or testing process and may be based on:

■ Bug reporting rate as an indication of software quality.

■ Bug reporting rate during regression testing as an indication of quality
of bug fixes without impacting other functionality.

■ Ratio of fixed bugs to new user-reported bugs in a release as an indic-
ation of quality of regression testing.

■ Resubmission rate of bugs as an indication of problems in the specifi-
cation or unit testing of changes associated with a bug.

■ Testing coverage in terms of percentage of code executed when
performing various tests. This can be relatively easily determined
using various automated test coverage tools.

RISK MANAGEMENT SYSTEMS

214

■ In object-orientated design, the number of lines of code to classes,
number of methods per class and distribution of code across classes as
an indication of code quality.

■ Code defects per line of code for a given user to indicate poor coding
quality.

As with any risk monitoring process, a dramatic growth in the level of
a KRI acts as a warning indicator that risk is increasing and that the
project may be failing due to an inherent problem in the software process.

Levels of testing

Rather than simply testing the entire system and ensuring it behaves
correctly for a wide range of event sequences, testing is often performed
at various levels of the system. Testing low-level units of software enables
the process of code validation to be divided up into more manageable
pieces and ensures that testing is embedded within the development
process. Whereas the sequence of events that a system may need to deal
with is very large, each building block within the system will typically
only have to deal with a small subset of these events. Testing can therefore
be simplified by testing the interaction of these blocks separately and vali-
dating that each is correctly implementing the required functionality. This
also enables each block to be stress tested in a manner that may be diffi-
cult when it is embedded within a complete system; testing the strength
of a bolt within a machine can be more easily achieved by stressing the
individual bolt rather than the entire machine.

Embedding testing within the development process also permits
testing to begin the moment a unit of code has been successfully
completed, providing an objective validation that the piece of work has
been completed (rather than leaving testing until all system level func-
tionality is available). As software evolves over time to address changing
requirements, it is important to ensure that simple changes to a system
do not suddenly result in numerous errors resulting from failures in
other implemented functionality (which may arise indirectly from the
change). This highlights the importance of ensuring that the individual
building blocks within the system and any assumptions of their behavi-
our are well understood and tested.

Testing may be either black box or white box in nature. With black box
testing, only the public interfaces and externally visible behaviour are
used to test the software, treating the unit to be tested as a ‘black box’

215

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

where specific implementation details cannot be seen. The only assump-
tion made is that the piece of functionality being tested should meet the
defined specification for the unit. As a result, it is also known as
specification testing. White box or glass box testing uses the developer’s
knowledge of how the functionality is implemented to derive the test
cases and may also access private interfaces and data to ensure the
correct behaviour. Because its aim is to test the structure of the code and
ensure it meets the unit specification, it is also known as structural
testing. As with black box testing, the aim of white box testing is also to
validate that the specification is correctly met.

Because white box testing makes assumptions about the code struc-
ture, these tests can be expensive to maintain. Any change to the software
that changes the code structure (even if the observed behaviour remains
the same) can break the test. This can result in misleading test case fail-
ures. These tests can, however, provide more complete test coverage
because they can utilize an understanding of the specific implementation
to ensure all code paths are tested. Due to their sensitivity to code
changes, they are usually utilized towards the end of the project, when
the code base is more stable. White box testing is especially useful when
testing software that maintains state. Often this state is not visible exter-
nally but can easily be verified by white box testing to ensure its behavi-
our meets the state transition behaviour derived during the analysis
stage of the project. Testing occurs at the following levels:

Unit testing
Testing of an individual self-contained package of software to ensure that
it meets its specification. These tests are usually written by individual
developers (for efficiency and cost reasons) because they will understand
the precise specification being met by the unit of code. All but the most
trivial code changes should have unit tests associated with them, in order
to verify the change has been correctly implemented. The unit tests
should cover the changed functionality as well as verifying that other
expected behaviour is unaffected.

Integration testing
Verification that the individual units of software interact and work together
in the expected manner. These tests should include fairly long (perhaps
even end-to-end) processing paths but the focus is on testing intervening
software units and their interaction (for example exception handling,
persistence of data, transactions and so on.) They will consider various
partitions of the system functionality into logical sections of (overlapping)

RISK MANAGEMENT SYSTEMS

216

functionality. Even if all the underlying units of functionality have not been
developed, stub functionality can be implemented that provides enough of
an appearance of functionality to support any higher level process flow
testing. This approach is often used to validate high-level connectivity and
performance requirements but results in additional development effort to
write the required stubs. The resolution of integration issues often requires
the involvement of a wide range of project members and so can be difficult
and time consuming to solve. As a result, any such issues should be
resolved as rapidly as possible.

System specification testing
This refers to testing of the entire system as seen by an end user, to ensure
it meets the user requirements. If a use case approach is employed in the
requirements phase, the use case can easily be used as the basis for black
box system specification testing, verifying the behaviour and interaction
of all the units required to implement the use case. System specification
testing is an essential project-tracking tool in that it provides a natural
quantitative milestone indicating progress towards project completion. It
becomes an executable (and so measurable) equivalent of the specified
requirements. If the requirements change, tests will fail until explicitly
fixed to reflect the altered system behaviour. Interfaces into other systems
outside the scope of this project will need to be simulated through the use
of simulation software and data. As a result, it will not verify the integra-
tion of the software into the production environment, only that it will
integrate based on the assumptions and current understanding of those
systems (encapsulated in any simulation software).

User acceptance testing (UAT) and deployment or installation testing
UAT is intimately related to the scope of a project. The delivered function-
ality is defined by the scope of the acceptance tests or some subset thereof,
executed on the target user platform and environment, integrating into
other external systems within the organization. UAT is usually performed
by a group which directly represents the end users and is unconnected
with the project team. It is the final check that the system meets the speci-
fied requirements, running in the actual production environment (or one
virtually identical to it). UAT is the final stage in testing. It relies on:

1. Verification that the system has been correctly implemented, based on
passing all the relevant tests.

2. Validation that the requirements document, which the system and UAT
is based upon, correctly specifies what the stakeholders actually want.

217

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

This is achieved by verifying that UAT reflects the actual usage
of the system and will rely on the quality and completeness of
the requirements gathering process. By defining and verifying the
UAT requirements early in the project, many potential issues with
the user requirements can be resolved.

At the end of this testing, the decision is made whether the system is or is
not accepted. If it is not, the system is returned to the software development
team for rectification (or in extreme cases, project termination). Only if the
requirements gathering process and the development process have both
been correctly executed will the system pass UAT.

Types of testing

In order to address the many requirements of testing, different approaches
are used to test for specific types of software failure. The relative impor-
tance of each of these types of tests will depend on the user requirements,
but all should be present to some degree:

Operational tests
This is the most common type of test and verifies behaviour under expected
operating conditions. This may also include the behaviour that occurs when
processing onerous or incorrect data that is likely to be frequently received.

Regression tests
Regression tests are vital in the later stages of software development. They
verify that changes to the system have not resulted in the failure of previ-
ously working functionality. This is extremely important when frequent
bug fixes are occurring to the system. Levendel4 has noted that developers
generally introduce one new bug for every three that they fix. Developers
should therefore consider writing additional regression tests when fixing
bugs in order to verify that additional defects are not being introduced.
Regression tests are often based on the reuse of other types of tests. Because
they should be frequently or continuously performed, in order to highlight
regressions in the system, they should be automated wherever possible.

Performance tests
Performance tests verify that the system is capable of achieving the
required level of processing specified in the requirements, under different
types of load or event sequences. They can be problematic to perform if the

RISK MANAGEMENT SYSTEMS

218

testing environment is not identical or very similar to the production envir-
onment. If this is not the case, adjustments must be made to the perfor-
mance test results so that they are comparable with what will be expected
in the actual production environment. It is important that this task is not
left until UAT.

Load tests
Load testing verifies the behaviour under different levels of processing
load. Typically this concentrates on full load (where the data volumes
and number of users accessing the system are at the expected peak or
continuous load levels specified in the requirements), stress testing
(where the maximum specified levels are attained) and overload testing
(where these levels are exceeded to investigate how the system
behaves). Although overload scenarios should not necessarily provide
the expected behaviour that occurs under normal operating conditions,
it is important to ensure that they do not result in any undesirable side
effects which cause the system to fail in a catastrophic manner. In other
words, failure must be ‘graceful’. Load testing should also cover
running different user operations at the same time to ensure there are
no undesirable timing or other side effects from performing certain
tasks concurrently. As for performance testing, a test environment
which is identical or similar to that of the final production environment
will be required.

Failure tests
As well as testing the correct behaviour of a system under expected
inputs, the system should also be stressed to investigate its behaviour
under unexpected input conditions, whether this arises via the user inter-
face, in interactions with external systems or through the internal failure
of parts of the system. Failure tests often demonstrate deficiencies in the
requirements document by highlighting unspecified behaviour under
certain conditions. The aims of these tests are to systematically use the
system in a manner it was never designed to address. These tests should
cover any timing issues or race conditions in using the system, together
with failure of infrastructure such as networks, databases and servers.
They should also ensure that the system restarts or failover support oper-
ates as expected in the event of a serious system failure.

Usability test
Usability tests highlight poorly specified behaviour and assumptions in
the user interfaces, and any failure to adhere to style guides. These tests

219

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

are usually performed manually, verifying that screen layouts, error
messages and other pieces of information are displayed in a consistent
and usable manner. Because developers tend to focus on functionality
rather than usability, many systems can be difficult and cumbersome to
use, requiring the complex or unintuitive use of mouse and keyboard to
access certain parts of the screen. Many of these issues are obvious the
moment the user interface is used under the same time and workload
pressures that the end users will face. However, these issues are often not
highlighted when developers perform simple usage testing, using trivial
or low data-input volumes.

All the tests above should link back to the original requirements and
any inconsistencies or unspecified behaviour should be highlighted so
that the requirements can be updated and revalidated with the stake-
holders. As a result, the functionality and behaviour of the system to be
tested should be decided in collaboration with the test manager, senior
business analysts, lead software engineers and system architects. Each
will be able to provide a different perspective and understanding of the
likely failure points of the system.

Once a test has been passed, it should continue to be so in subsequent
testing. One of the first work assignments for the test team after running
the tests should be to investigate any that are failing. The cause of any
failure must be determined and resolved. Because of the side effects
caused by the failure of one section of code on another, ignoring failed
tests for too long can seriously impact the development process, as it will
be difficult to determine the true cause of any failure. This is especially
important if the failure is in core functionality that other development
will rely on. Because of this a key set of tests, called smoke tests are often
defined and must be passed before changes are propagated throughout
the development team or more detailed testing is performed.

The testing process

Testing, like all other sections of the software development lifecycle,
must be carefully planned and not performed in an ad hoc manner.
Whenever test cases are run, it is important that this occurs in a
predictable and reproducible manner. It is then possible to reproduce test
failures and compare the percentage of tests passed in a consistent
manner. The implications of this are that any test environment must:

RISK MANAGEMENT SYSTEMS

220

■ Return itself to a known state before executing any test scenarios

■ Execute any test using defined inputs

■ Ensure test results are repeatable by reducing any system unpre-
dictability arising from sequencing or timing issues. This can be
achieved by utilizing the same system configuration and load charac-
teristics on each test run.

Both the level and the completeness of testing to be implemented
should be decided, communicated to the entire project team and esti-
mates provided for inclusion in the project plan. The interrelationship
between different tests should also be determined so that time is not
spent on addressing failed integration tests when the underlying unit
tests are also failing. Adequate documentation must also be maintained
explaining how the tests should be run, the aim of the test and linkages
into appropriate requirements and analysis documentation. The
general testing approach is to separate the inputs to the system into:

■ Initial system state and configuration that defines the system load and
data at the start of any testing

■ Test data and stimuli that are received and processed by the system

■ Simulator configuration defining how any external interface simula-
tors will behave when interacting with the system.

By separating out these different types of data and stimuli, it is
possible to reuse test data, test programs and initial system states and
configurations. They can then be employed in different combinations, in
order to generate a larger number of test scenarios. For example, by
changing the system configuration it is possible to extend operational
tests to be load tests. Similarly, by using different test data, the processing
of different portfolio and instrument types can be investigated under
similar conditions.

The testing process (Figure 8.1) will take the input data and generate
some type of output. This may be graphical output or data sent to
external systems. This output is then compared against a baseline or
expected output.

221

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

If the output from the test is the same as the baseline output then the test
is passed. Differences between the output and the baseline will indicate
a failed test, the cause of which must be determined. This may be due to:

■ Incorrect baseline output

■ Change in test data, test program, simulators or configurations

■ Change in system specification

■ Incorrect or unimplemented system behaviour

■ Incorrect test environment configuration or set-up

If the cause is due to a change in system behaviour or specification,
resulting in the system no longer meeting the user requirements, or
due to an error in the test program, the error should be assigned to an
appropriate member of the development team. The testing team
can resolve other causes of test failure by either modifying the test
data or regenerating the output baseline so that it matches the
expected output.

Although as much automation as possible is desirable, this must
be weighed against the cost of setting up such environments and any

RISK MANAGEMENT SYSTEMS

222

Figure 8.1 The testing process

Initial System

State and

Configuration

System or

Test Unit
Output

Test Data

Baseline

Output

C
o

m
p

ar
is

o
n

External

System/User

Simulators and/or

test program

Simulator

Configuration

External
System/User
Simulators and/or
test program

maintenance required. For example, some GUI testing tools can be
highly sensitive to changes in the GUI layout. Since this is an area that
often changes with user feedback, it is also an area of automated
testing that can result in exceptionally heavy maintenance early on in
the development process. As a result, initial testing is often performed
manually while there are frequent changes, before being automated
when the GUI is more stable.

Test reporting

As with any risk management process, the testing process should maintain
a record of the results of testing, together with a description of those
results, so that progress and setbacks can be clearly monitored over time.
This information can be used to derive KRIs and highlight individual
sources of risk within a project. For example, the performance of indiv-
idual developers can be monitored by tracking the frequency of defects
within their code or the time taken to resolve failed regression tests.

Having performed the test, it is important that the results are commu-
nicated to all those involved in the software project. This not only
increases transparency of the process, aiding project management, but
also provides information for testing meetings where common experi-
ences between all the team (testers, developers, business analysts, project
managers) can be shared.

A priority or test score should be assigned to the passing of each test.
For some tests, such as performance or stress tests, different scores may be
attained when the system is able to process higher volumes or handle ever
more complex failure cases. The evolution of these scores and the tests
passed then provides an independent record of project progress that can be
monitored and linked into managing the project plan. To support this
monitoring process, additional test notes can be added to the final test
report that give more subjective or summary information. This provides
context to the progress of the testing at any particular moment in time.

TOTAL QUALITY MANAGEMENT

The aim of testing within the software development process is to
examine various behaviours of a system and compare these to the base-
line requirements. It is, however, difficult to ensure high quality software
purely by testing and debugging it. Instead quality must be embedded

223

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

throughout the software development lifecycle and built into the software
process. As noted in Chapter 4, the later a bug is discovered, the more
expensive it is to fix. By reducing the number of bugs in the software and
ensuring implemented functionality is correct first time, costs can be
dramatically reduced.

Total quality management (TQM) tries to provide management and
control structures that focus on ensuring quality and constant ongoing
process improvement throughout the project. Quality is defined as
being those qualities that will lead to stakeholder satisfaction. TQM
must involve all project members with an aim to instil a culture of
developing high quality code that adheres to any coding standards
and is delivered to schedule and budget. Reviews and testing then
become merely a validating process, certifying that the software does
indeed meet the user requirements. Many techniques for software
process improvement have been developed to provide developers
with the discipline and tools to manage their performance and soft-
ware quality.5

Software refactoring

Refactoring6 is a disciplined approach to improving the quality of soft-
ware or architectural design in terms of maintainability and structure
without introducing new behaviours, after the initial implementation
has been written. Software should be neither over nor under engineered;
it should implement what is necessary to meet current functional and
quality requirements in a maintainable manner. Over-engineered solu-
tions, often produced in the hope of providing additional future flexi-
bility and sophistication, can lead to complex software which takes
longer to develop and is also more difficult to understand and maintain.
Similarly, under-engineered solutions require significant changes or
rewriting to handle even the simplest changes, which may ripple
through the design. Instead, a balanced approach is needed where the
software is no more complex than it need be but is structured so that it
can be refactored to support additional functionality as required, in an
evolutionary manner.

Refactoring often involves the clarification and simplification of the
refactored code, removing any duplication or poor design. This may
involve the refactoring of software into accepted design patterns. Design
patterns can improve the comprehensibility of code by basing the
design on well-documented and understood approaches. Developers

RISK MANAGEMENT SYSTEMS

224

should, however, beware of using patterns when they are not appro-
priate; a condition known as being ‘pattern happy’. It is also absolutely
essential that the ability to refactor is not used as an excuse for poor
quality design or code.

Reviews

Various types of review process can be used to improve software quality.
These reviews may also be extended to include documentation and
testing procedures in order to ensure the appropriateness and correctness
of any requirements and testing being performed. Reviews should be
performed frequently during the development process, typically coin-
ciding with delivery milestones that mark the completion of a section of
code or piece of functionality. The review process, just like other aspects
of software development, is iterative, dynamic and constantly improving
through refactoring and refinement. During the first iteration, a large
number of issues are likely to be uncovered. The appropriate project
team members will then need to resolve these issues before further
reviews occur. In following reviews there should be fewer and fewer
issues, until all those involved in the review process approve the resolu-
tion of all the highlighted issues. Although ensuring convergence and
agreement of the resolution of any issues can be difficult to manage, the
process has the advantage that the whole review team will be the owner
of the end product. The question of who causes a defect to occur should
then never arise, as it will be the responsibility of the entire team to
ensure a defect-free system is produced. The ‘author is no longer here, so
nobody understands this code’ situation will also be eliminated,
reducing any maintenance risk in the project.

Code and design reviews

Code and design reviews are formal meetings where approaches and
models are discussed with all interested parties for comments
and approval. Frequent review and assessment of the proposed design
and architecture is key for any project. Only by reviewing assump-
tions, design decisions and progress can project risks be highlighted
and then mitigated. By involving all key personnel in decision making
at the earliest possible point, the quality of decisions should be greatly
improved. This review can act as a break point for the team to refocus

225

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

on what has been produced and enable the project to change direction
if it is off course. It also provides individual developers with a
high level ‘helicopter view’ of the project, putting their effort into
perspective, and permitting them to raise any issues that they may not
previously have been aware of. Even if no changes are made, it can
help act as a milestone for the team to acknowledge their achievements
so far and also provides an open and visible marker for the project
manager. These reviews can also prevent group denial of outstanding
but unaddressed issues before they become a major problem later in
the project.

Code inspection

Slightly less resource intensive and more informal, the code inspection
process requires the review of any changes to or new pieces of function-
ality by an independent developer who is familiar with the overall solu-
tion and any development standards. This should also cover associated
documentation and unit or regression tests. As with other qualitative
approaches to risk measurement and reduction, code inspections
provide a holistic but not necessarily complete approach. Code inspec-
tions can also be used to cross-train team members in different parts of
the code, creating a sense of collective ownership. This has the advan-
tage of helping to create an open culture and reduce any specific depen-
dencies on individuals within the project team, increasing resource
fungibility, which reduces project risk. The inspection process should
ensure appropriate architectural standards and patterns are adhered to
and that the reporting of errors, raising of exceptions, and persistence of
data are all handled in an identical manner, using common design
patterns where appropriate.

The aim of code inspections is to highlight defects in the software and
design process or deviations from various standards, thus improving
code quality and maintainability. The inspection process should high-
light any incorrect assumptions in the use of other pieces of code which
could result in system failure or incorrect operation. Developer egos or
opinions should not be allowed to dominate this process, and any coding
standards should be common sense and accepted by the entire project
team, rather than being blindly enforced dogmatically. The failure to
adhere to design or coding standards will result in the system becoming
more inconsistent and difficult to understand and maintain, all of which
will increase project risk.

RISK MANAGEMENT SYSTEMS

226

Code walkthroughs

Similar to code inspection, this is when a developer responsible for a
section of code leads one or more members of the development team
through various scenarios and stress tests for that code. These other
developers should ask questions, make comments concerning the imple-
mentation, highlight possible errors or missed cases and non-adherence
to standards. The very process of articulating code behaviour and
explaining coding decisions can often enable the developer to realize fail-
ings or omissions in the code. This process should also highlight any
antipatterns. Software antipatterns7 are patterns found within code that
impose certain constraints, limitations on maintainability or failings into
the code structure. They can have a major impact on code quality and
should be removed by refactoring.

VALIDATING, VERIFYING AND BACKTESTING
APPROACHES AND MODELS

Any approaches used either to develop software or as the basis for
modelling risk within the organization will be subject to a number of
uncertainties and potential failings:

■ Is the approach or model appropriate given the context of the organ-
ization and the risks it takes?

■ Is the approach or model correctly implemented?

■ Does the outcome of actual events support the hypothesis on which
we base our decisions?

This introduces three tasks that need to be performed:

1. Validating that an approach is appropriate given the types of risk or
organizational context.

2. Verifying that it is being correctly implemented and used.

3. Scientifically testing any assumptions by statistically comparing
expected and actual outcomes and ensuring that they do not signifi-
cantly disagree.

These three tasks can be seen most effectively in the verification and
validation of risk models used to price and risk manage financial

227

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

instruments, but similar techniques also apply to selecting an appropriate
software development process in order to assess, manage and mitigate
development risk.8

Model risk

Models are simplifications of reality, with inherent assumptions and
deficiencies. As a result, these assumptions must be investigated to
ensure that they are likely to be valid, model inputs must be verified to
ensure that they are correct and model outputs should be tested against
actual events and losses to ensure that expected and actual outcomes do
indeed agree (Figure 8.2). By both validating and verifying processes
and models it is possible to ensure that any deficiencies do not result in
significant failures in the risk management process. All models, because
of their inherent assumptions, will have limitations and conditions
when the model will fail and not match real world behaviour.
Managing model risk is concerned with understanding when and why
they might fail, and ensuring models are improved if they are not able to

RISK MANAGEMENT SYSTEMS

228

Figure 8.2 Interaction of model development,
validation, verification and testing groups

1. Model
Development

2. Model
Validation

3. Model
Verification

4. Model
Testing

Assumptions and
implementation

Assumptions and usage

Comparison

Verification of assumptions and
implementation

Actual
Outcomes

Additional reserves and
unmodelled risks

Modelled
Outcomes

Comparison

adequately reflect actual risk. Within most financial organizations there
are four interacting tasks performed around the risk modelling process
that support this aim:

1. Models are developed by various model development groups within
the organization. For pricing and risk managing market and credit risk
in individual traded instruments, these groups are likely to be associ-
ated with the trading operation that will utilize their models. Because
operational risk permeates the entire organization, these models, as
with the models used to aggregate market and credit risk across the
organization, tend to be centralized in risk management groups. This
group is responsible for deciding what assumptions will be made by
the model, given their understanding of the risks being modelled.
These assumptions will then be highlighted to the traders, risk
managers and risk validation group.

2. The models are validated to ensure that they are correctly implemented,
with any assumptions or deficiencies analysed and documented, based
on any potential differences between actual expected and modelled
event behaviour. Only by understanding these models and modifying
them where necessary can the risk manager and trader have any confi-
dence in the resulting risk information and identify the occurrence of
events that may result in the models failing. Model validation usually
occurs in risk validation groups or is undertaken by external auditors,
who are independent of the model development groups.

3. Once the deficiencies of any models have been understood, the use of
these models together with the correctness of any model inputs must
be verified. Model verification ensures that these models are not used
inappropriately and the sources of any input parameters are correct;
any model will be designed for use in certain situations that exhibit
the behaviour assumed in the model. This task is often performed by
a control function within the organization. Any risk arising from
unmodelled risks, model mis-specification, unsuitability or uncer-
tainty in the input parameters will have had reserves made against it
in order to provide an additional buffer to the calculated regulatory
and economic capital. These reserves retain some of the trading P&L
so that any reported trading profit is more conservative than it would
have been, having been reduced to account for potential unmodelled
future loses or risks.

4. Models should also be tested and compared (or backtested) against
actual events to ensure that predicted and actual losses do indeed

229

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

agree. Any discrepancy between expected outcomes and actual
outcomes must be statistically acceptable for any probabilistic
models and within acceptable accuracy limits for exposure-based
approaches. If this is not the case, it is likely that any risk mitigation
strategies implied by these models may not in fact have reduced the
risk profile as expected. Model event sensitivities together with the
actual occurrence of various events are often compared against any
P&L in order to provide some level of P&L explain, where the occur-
rence of various events is associated with individual returns that
comprise the total P&L. This can highlight situations where P&L
cannot be adequately explained, which may highlight a deficiency in
the model or an area of risk which is not being monitored or
included in this explanation process. The nature of scientific and
model testing in particular is that models can only be rejected, not
validated as always being a true representation of reality. This is
clearly problematic when trying to verify models that deal with large
impact, low probability events, which is a concern for operational
risk modelling. Even where a model has been shown to be deficient,
the cause of that deficiency may be due either to inaccurate or incor-
rect subjective model input parameters or a flaw in the assumptions
of the model.

A new business process is usually implemented to ensure that new
types of instrument can be risk managed, settled and accounted for
before any transactions are executed. This may require the provision of
ad hoc functionality that feeds into the usual risk management, settle-
ment and accounting systems within the organization. The volume of
these new types of transactions will however be limited until the associ-
ated operational risk can be reduced through the implementation of
more robust processing mechanisms. Often the initial processes will rely
heavily on spreadsheets and manual processes to make up for the defi-
ciencies of existing systems. As a result, they will have high levels of
operational risk associated with them.

Backtesting

Whenever risk is measured it is important to compare actual against
predicted outcomes in order to ensure that the two do indeed agree. The
most common form of this type of testing is the backtesting of P&L
against VaR, which is often a regulatory requirement.

RISK MANAGEMENT SYSTEMS

230

P&L is an inherently backward looking measure. It indicates what
profit or loss has been made by a business unit, and will comprise real-
ized (which arises from an actual cash flow, possibly by selling a position
in a financial instrument) and unrealized P&L (which arises from
changes in the current market value of financial instruments). Unrealized
profit may equally be lost in the future; what is important are the forward
looking measures such as expected return and any associated risk. The
aim of backtesting P&L is to validate the risk predicted by a model
against any actual losses and to ensure that they are not statistically
significantly different. For VaR, this is achieved by measuring P&L and
ensuring that any VaR limit is not exceeded more frequently than the
calculated confidence level would imply.

When validating VaR, the reported ‘dirty’ P&L is modified to omit any
sources of profit or loss that are not included in the VaR model. This
resulting ‘clean’ P&L does not include any P&L arising from intra-day
trading, new trades or changes in reserves that may be taken over the
time period used in the VaR calculation. This figure should only include
P&L arising from market moves, carry/funding costs and market-related
adjustments. Many organizations also backtest against dirty P&L or
compare dirty and clean P&L to ensure that there are no unexpected or
unexplained differences between the two. Significant divergence can
indicate aspects of risk that are not being captured or monitored by the
risk process. Dirty P&L is often much easier to measure because it
represents ‘bottom line’ P&L that will be recorded in the GL. It is also the
underlying driver of actual losses for the organization that will impact its
financial viability.

Although the VaR calculation is typically a one sided test in that it
focuses only on potential losses, it can also be used to determine the like-
lihood of profits being much higher than expected. This figure can then
also be validated against P&L to further validate the model. The cause of
any exceptions should be thoroughly investigated to understand
whether they are due to statistical effects or deficiencies in the data or
modelling process.

Processes such as backtesting also have complex reporting and
analysis requirements so that the precise source and cause of any discrep-
ancy can be determined. When backtesting VaR, the backtesting may
need to be applied at the subportfolio level, in order to discover what
types of instrument or trading strategy have caused this discrepancy.

Backtesting approaches can also be used to compare the realization of
risks (those problems which did occur) within a project against its
various risk measures (those problems that could occur), in order to

231

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

verify their accuracy. Where these project measures are shown to be
deficient or inappropriate, they should be replaced by measures that are
more likely to provide early warning signals. Similarly the effectiveness
of any testing procedures and expected defect levels can be compared
against actual end user reported defect levels.

REPLACING EXISTING FUNCTIONALITY

One of the most difficult requirements to address is the ability to
account for any discrepancy in the output from the existing system and
that produced by the new system. It is not unusual for unfounded
confidence to be placed in the existing system, even if it is understood
to be deficient. The project team will then need to show that any
discrepancy is due to a failure of the existing functionality and not due
to a defect in the new system. As a result, there is usually a period when
both systems are run in parallel and the outputs from each are
compared. Unfortunately, differences will arise not only because of
previously undetected defects in either system, but also from:

■ Differences in input data, which will include any data concerning
sources of risk together with risk events that cause any losses

■ Differences in the methodology used to measure risk

■ Differences in the representation of that risk.

Being able to precisely reconcile two systems can be extremely diffi-
cult, if not impossible to achieve, and can end up just confirming that the
specification of each system is indeed different. Some level of compara-
bility (Figure 8.3) may, however, be achieved by:

■ Inputs into the new system being filtered or modified to match those
of the existing system

■ Output from each system being transformed into a comparable form.

It is important to be able to ensure that there are no unexplained
material discrepancies and that any explanation does not arise from a
failing in the new system, otherwise the stakeholders are unlikely to
have enough confidence to wish to deploy the new system. The level to
which this reconciliation process is performed will depend on the

RISK MANAGEMENT SYSTEMS

232

amount of other testing executed and the level of material discrepancy
that occurs. This process is often one of diminishing returns and the
risk/return trade-off must be carefully managed. Transparent proto-
types, developed using less robust or performant tools such as spread-
sheets or mathematical workbench tools, can help to verify new
functionality by creating a baseline to compare against the output from
the new system. Provided these prototypes can be independently
verified, it should be possible to convince any stakeholders of the
correct operation of the new system in specific cases where it signifi-
cantly differs from the existing system.

Notes

1 S. Maguire, Writing Solid Code (Microsoft Press, 1993)
2 R. Backhouse, Program Construction and Verification (Prentice Hall, 1986)
3 J. C. Hull, Options, Futures and other Derivatives (Prentice Hall, 1997)
4 Y. Levendel, ‘Reliability analysis of large software systems: defect data modelling’,

IEEE Transactions on Software Engineering, 16 (2) Feb 1990 141–52

233

QUALITY MANAGEMENT
AND TESTING

ch
ap

te
r

ei
g

h
t

Figure 8.3 The system reconciliation process

Existing System

New System

Inputs

New Inputs Filter New Output

Output

M
ap

pi
ng

 a
nd

C
om

pa
ri

so
n

5 S. Zahran, Software Process Improvement – Practical Guidelines for Business Success
(Addison-Wesley, 1998)

6 M. Fowler, Refactoring – Improving the Design of Existing Code (Addison-Wesley,
2000)

7 W. Brown, R. Malveau et al., Antipatterns: Refactoring Software, Architectures, and
Projects in Crisis (John Wiley and Sons, 1998)

8 W. Florac and A. Carleton, Measuring the Software Process: Statistical Process Control
for Software Process Improvement (Addison-Wesley, 1999)

RISK MANAGEMENT SYSTEMS

234

235

CHAPTER 9

Deployment,
configuration and

change management

The term configuration management refers to how the software process
deals with recording and managing change. This includes the issues of
source code control, versioning, building and deploying the system, as
well as defect and change tracking. Controls should be built in to the
change management process in order to ensure that all required activities
and tasks are performed before the release of any system. For example, a
problem report should exist and have been approved prior to the modifi-
cation of any software or documentation; review activities should have
been completed before allowing changes to be visible to other developers.

The configuration management process highlights the iterative nature
of software development. Rarely is a system ever developed and
deployed with no further changes being required. Managing this process
from both a risk and a resourcing perspective is essential for the ongoing
success of the project.

DEFECTS AND CHANGE REQUESTS

The aim of any configuration management process is to control software
development activities from both a productivity and a risk perspective

as well as to ensure that any resources are correctly deployed within
the project. This can be especially important when managing defects
and change requests (Figure 9.1) as the new tasks arising from this are
unlikely to have been explicitly included in the initial project plan.

It is important to distinguish between code defects (functionality that
has been incorrectly implemented), system configuration issues (incor-
rect functionality due to internal or external data or system set up) and
change requests (functionality that has been implemented according to
the requirements specification, which has now changed). The drivers for
these types of problems are distinct in that:

■ Defects arise from the software implementation process

■ System configuration or data issues arise from the incorrect deploy-
ment of the system or incorrect data or data maintenance processes

RISK MANAGEMENT SYSTEMS

236

Figure 9.1 The defect and change request management process

External Reports Internal Reports

Acceptance or Rejection

Prioritization

Assignment

Review and TestingResource Pool

Release into System

Resource

allocation

Release of

resources

Release into Production

■ Change requests arise from failure of the communication and validation
of requirements between the business analyst and the stakeholders, or a
misapprehension or misunderstanding of the true requirements by the
stakeholder.

Managing the risks associated with each of the above can be very
different. Defects can often have as much impact as a small change request
and should not necessarily be treated too lightly. An explicit process for
prioritizing the removal of any known defects should be defined. This will
ensure that the resolution of any defects takes an appropriate place in the
project plan, without unnecessarily impacting any critical delivery mile-
stone dates. Batching a number of related defects together into a single task
can be used to increase the efficiency of this process; when making a
change within a section of code, it is usually most efficient to perform other
similar changes that impact the same area of code at the same time. When
defects are serious or where their resolution may have significant side
effects, it may be necessary to treat them more like change requests in order
to ensure any impact on the project is well understood.

Change requests tend to have a much wider impact on the overall
design of a system; correcting a code defect typically only impacts the
section of the code where the defect can be found. Changes in function-
ality can, however, require modification to the design and interaction of a
number of disparate parts of the system. Change requests also impact the
project plan because they increase or change project scope. The number of
change requests that are included within a release of a system can have
serious consequences for project delivery, a point discussed in Chapter 7.

For these reasons, change requests need to be managed explicitly. All
change requests should be given due consideration when proposed, but
they must be reviewed and approved in order to determine their impact
in terms of cost, project schedule, quality and risk. This impact needs to
be understood by all the parties (stakeholders and project team)
concerned. The aim of any change control process must be to protect the
project from unnecessary changes and ensure that any changes that are
proposed have been well thought out and specified. Because work on
change requests competes with other work, it must be explicitly
managed and made visible within the project plan. In this way the stake-
holders are less likely to be surprised if or when delivery dates start to
slip due to the impact of these changes.

If the change occurs early enough in the project and is clearly related
to an ongoing or not yet started task, reworking the tasks within the
project may enable the request to be included within existing project

237

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

work, perhaps with less slippage than originally estimated. However,
not all change controls will fit into existing work in this way and so
new tasks will need to be created and assigned resources. Again, simi-
lar change requests should be grouped together and performed as a
single task.

SOFTWARE PROBLEM REPORTS (SPRs)

Software defects or requests to change functionality should be reported
to the project team through a well-defined process. This usually involves
the production of a software problem report (or SPR), which defines the
nature of the problem and provides complete traceability and status
monitoring for the problem. SPRs can be generated either internally
within the project or by end users. As a result they may relate to either
externally visible system issues, or internal software and design-related
issues. An SPR should capture enough information to fully define the
nature of any problem and will need to contain details such as:

Person raising the SPR
This should also highlight whether the SPR is being raised internally
within the project or by an external user.

SPR identifier
A unique identifier, usually automatically assigned, that is used to track
the SPR and assist in traceability.

External reference identifier
If the user or support groups also assign this SPR a unique identifier
it too should be recorded to assist reconciliation within the SPR process.

Category and area relating to SPR
This should provide enough information to determine the team that will
be responsible for resolving the SPR. It should also categorize the nature of
the SPR, which may be a software defect, change request, error in docu-
mentation, support issue, configuration issue, failure in the testing process
and so on. Many users will assume that any behaviour that does not agree
with their understanding of what the system should do is a defect in the
system. As a result, some defects are likely to be modified to change
requests after further clarification and discussion.

RISK MANAGEMENT SYSTEMS

238

Summary and description
High-level description of the nature of the problem, with a more detailed
description of the defect or change request. This should detail why the
reported problem is an issue.

Severity (critical, serious, non-critical)
Categorization of the severity of the problem. This may be changed after
investigation of the cause of the SPR and on further discussion with the
users or project team.

Status
The status of the SPR. This may be one of:
Mistaken: the SPR was incorrectly reported
Duplicate: of an existing SPR (in which case this SPR should be linked to
the existing SPR, in order to ensure traceability)
Active: an active SPR whose state may then be one of:

■ New – initially reported
■ Verified – verified and confirmed as being an SPR
■ Allocated – detailing the resources responsible for its resolution
■ Under investigation – detailing cause of the SPR, estimated effort

required to resolve and any proposed solution. This step may also
determine the true cause to be an external data or configuration
issue that requires no change to the system. Once the problem has
been investigated the priority of the SPR may be modified
depending on the cost and benefit of addressing it

■ Fixed – the developer has resolved the SPR
■ Tested/reviewed – an independent test and review of the change

has been performed
Integrated into stable release: fix has been integrated into the development
system.

Version of system SPR relates to and any specific environment details
This will assist in replicating the SPR by being able to relate it to a specific
version of the system. Any environment-specific information can also help
verify that it is not due to the deployment environment.

How to repeat
Before an SPR can be resolved, the underlying cause of the problem must
be determined. The cause of any problem and the point at which it is
apparent can be in totally different parts of a complex system. Knowing

239

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

how to repeat the process that resulted in the SPR will ensure that any
cause can be more easily determined. If the steps taken to repeat the
behaviour reported in the SPR are incomplete or incorrect, it can be excep-
tionally difficult and time consuming to determine the exact sequence
required to reproduce it.

Version of files the fix is included in
This will indicate at what point the change is made in the source code
control system. It will assist in ensuring it is included or omitted from a
future production release of the system.

A key control in this process is to ensure that different people perform
the roles responsible for modifying the status of an SPR. This introduces
independent verification of resolution or progress in resolving the SPR.

SOURCE CODE CONTROL

Source code or version control1 is the process of managing and
versioning changes to project artefacts. Even for a single developer the
benefits are clear. It provides both a history of changes (usually with a
description of why any change was made) and the ability to view and
recover information as of some previous point in time. Source code
control is an important process in attaining the higher CMM levels,
providing traceability and a clear audit trail of any changes – what was
changed, by whom, why and when. When multiple people work on the
same project artefacts for overlapping or multiple releases of a system to
different deployment environments, the issues of co-ordination and
controlling changes become considerably more complex.

Concurrent development, where multiple developers work on the
same code base, is a fact of life. One of the major problems arising from
this is that the work performed by one developer is likely to depend
upon or interact with that produced by other developers. In order to
verify the correct operation of the integrated system, this dependency or
interaction is a key requirement at certain stages of the development
process. However, prior to the completion and testing of each unit of
work, this can lead to interference between different development
streams, making the process of concurrent development unworkable.

The source code control system permits members of the project team
to obtain (or check out) copies of project artefacts such as software or
documentation, which they can then work on privately. Their changes

RISK MANAGEMENT SYSTEMS

240

will not be visible to others until they commit or check in those changes to
the source code control system. This check-in process ensures that the
version which is being updated is the same as the version on which the
modifications have been made. If this is not the case, and more recent
changes have been checked in since this artefact was checked out, then
these overlapping changes must be merged together into a new version
of the artefact where none of the overlapping changes are overwritten or
lost (Figure 9.2).

The merge process produces a new version of an artefact, which tries to
include both the changes in the version being committed together with any
changes that have been checked in since this version was obtained from the
source code control system. These overlapping changes may conflict or be
difficult to resolve. This can result in a complex and time-consuming
process that can introduce additional risk into the project through the possi-
bility that some changes are lost during this merge process. Reoccurring
defects or omitted functionality will then result.

The problem of conflicting overlapping changes within the source code
control system can be prevented by developers obtaining locks on artefacts

241

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

Figure 9.2 Non-conflicting and conflicting changes of
artefacts under source code control

Time

User A

User B

Local Copy

of Artefact

Local Copy

of Artefact

Source

Code

Control

Check out

artefact

Check out

artefact

Check out

artefact

Check in

change

Check in

change

Check in

change

Modify artefact Modify artefact

Modify artefact

Version 1 Version 2 Version 3

User B’s change is

overwritten by User A

Modify artefact

Check out
artefact

Check in
change

Check in
change

Check in
change

Check out
artefact

Check out
artefact

Modify artefact

Modify artefact

Version 1 Version 2 Version 3

User B’s change is
overwritten by User A

that they wish to modify. These locks prevent other developers from
changing that artefact until the lock has been released, which occurs once
any changes have been committed into the source code control system.

The process of locking or merging changes into the source code control
system results in an essentially linear sequence of changes being
performed and checked in, one after another. This is an acceptable
approach where each individual change is self-contained and, once
made, should be included in the version available to the entire project
team. It does not, however, support the concept either of different groups
of developers sharing and working on essentially different versions of
the system (which will be merged together at a later date) or of artefacts
being checked in when they are in an incomplete state and so should not
be seen by other members of the project. Permitting developers to
privately check in artefacts in an incomplete state provides them with all
of the benefits of source code control (being able to return to a previous
version, look at changes and so on) but without having to make these
changes visible and possibly interfere with other development.

The ability to utilize the source code control system so that developers
can check in changes that not all other developers need to see is
supported by having a branching model. This permits the code base to be
isolated at a given point of time so that concurrent development by
different groups or individuals then causes the code paths to diverge
from each other until any changes are ready to be integrated and merged
back together. The initial branch from which development diverges is
called the mainline branch and is the branch into which all changes will
need eventually to be combined. Tags are often used within source code
control systems to link together individual versions of items within the
source code control system that combine into a single working release of
the system. An example of the branching process can be seen in Figure
9.3. The branch names are depicted by boxes, with tagged versions of
each branch represented by circles, and the addition of features as
diamonds. The merging of a branch into another or back into the main-
line can be seen as dashed lines.

The branching process has the benefit of ensuring consistency and reli-
ability, with developers able to modify and share changes with certain
other developers using the same branch, but to not impact those who are
using different branches. This enables significant changes to certain parts
of a system to be made without impacting other development. Once
those changes have all been completed and tested, the branch can then be
merged back. The aim of this approach is to reduce the chances of large-
scale changes breaking the mainline, which is typically used as the basis

RISK MANAGEMENT SYSTEMS

242

of ongoing development. It can increase developer productivity but
results in the additional overhead of increased co-ordination within the
project and the merging of numerous isolated changes into a single inte-
grated view of the system at some point in the future. There are two
extremes to branching policy:

Early branching
Each developer creates a branch from the mainline and works on that
from the very start of the project. These changes are then merged back
into the mainline at appropriate points in the development.

Deferred or lazy branching
Each developer works on the mainline unless or until working on a major
task that conflicts with or could disrupt the work of other developers.
This type of branching can be used to remove the need for code freezes
where developers cannot commit their changes until a stable, tested
version of the system can be generated and tagged. Instead of creating a
code freeze, a separate release branch is created while development
continues on other branches. Once the release is stable it is merged back
into the mainline.

243

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

Figure 9.3 Example of a branching diagram

Time

Mainline 1.0

Branch a

Feature 1 Feature 2

Feature 3

1.1

Branch b

Branch c

Feature 3

merge

merge

branch

branch

branch

As well as having a branching policy within the project, there should
also be a merging policy. This will indicate how frequently branches
should be merged and who should be responsible for performing this
and resolving any issues from the merge process. The frequency of
merging will dictate how early on in the development process problems
and risks arising from integrating different development efforts are
highlighted. Being able to detect these issues early in the development
process will however be at the expense of having to perform a frequent
or continual merge effort. Ideally, changes should not be combined into
the mainline branch until any resulting merged code has been success-
fully run and tested.

It should be clear that the branching process can increase both
project risk and productivity. The project workflow should be decom-
posed into separate lines of development that can then be recombined
back into the mainline branch so as to maximize productivity but with
the least amount of additional effort and risk from performing any
merge process. There are many policies for determining when
branching or merging should occur. The precise approach will depend
on the nature of any concurrent development and the risk appetite of
the project.

The project’s risk appetite for branching is, however, likely to change
throughout its life; early on in the development it may be less risk averse
than when the system is in production. The project manager may be
willing to trade-off greater productivity against a higher level of risk at
the start of a project, which will not be acceptable when maintaining a
system already being used in a production environment. This implies
that the branching policy of a project may change over time.

When selecting a source code control system, the following may be
required:

■ Distributed repository in multiple locations.

■ Accessibility in a performant manner from all development locations.

■ Integration with the chosen development environment, processes
and tools.

■ Concurrent users and support for adequate branching.

■ Links to the software problem reporting and project management
system to ensure traceability.

■ Efficient visualization of different versions of information under
source code control.

RISK MANAGEMENT SYSTEMS

244

■ Ability to perform validation checks before information is checked in to
certain branches. This can be used to ensure that unit or smoke tests are
passed before any changes may be committed and helps to ensure the
stability of the software within the source code control system and
prevent incorrect functionality impacting other developers.

■ Transaction support for complex wide-ranging changes. For example,
all the changes are checked in together or none are; this ensures that a
consistent set of changes are always checked in, rather than permitting
the check-in of some to succeed and others to fail, possibly due to
previously unnoticed merge conflicts.

■ Event triggers so that committed changes can notify other users or
start build processes.

■ Ability to determine which artefacts are being modified (or are
checked out).

■ Viewing of a history of changes for artefacts within the source control
system.

■ Visually comparing differences between different versions of artefacts.

■ Versioning of artefacts and ability to revert to a previous version (even
if it has been deleted) as of some given date.

■ The ability to synchronize to the latest or a previous version of an artefact.

MAINTAINING TRACEABILITY

The configuration management process must help to ensure traceability
is maintained. Defects and change requests must be associated with
given versions of the system and the impact of any change must ripple
and be recorded throughout the development process. This should
update all aspects of the project and ensure the information is synchro-
nized and versioned. In particular, change requests will modify the
requirements, which will modify the analysis and design and hence the
implementation (Figure 9.4). These changes to the requirements will also
need modifications to be made to any tests associated with these changed
requirements. Failure at any point in this chain of dependencies will
result in an implementation that will fail during the software testing
phase, either because the unmodified tests do not now match the output
from the modified implementation or because the implementation does
not reflect the latest requirements that are included in UAT.

245

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

VERSIONING SYSTEM RELEASES

The aim of versioning releases is to indicate the compatibility between
different versions of a system, or components, and modules within a
system. It also provides a tag to identify versions of artefacts within the
source code control system used in a given release, against which change
requests and defects can be reported. There are many approaches to
versioning software but the generally accepted approach is to break
down a release into:

Major release
This indicates significant change or improvement in a system or software
component that is usually associated with a change in an interface or exter-
nally observed behaviour. This will mean that major releases are not back-
ward compatible, that is they cannot be replaced by earlier major releases.

Minor release
This is a feature enhancement of a non-trivial nature that does not change
any existing interfaces or behaviour of the system. As a result, compo-

RISK MANAGEMENT SYSTEMS

246

Figure 9.4 The impact of change requests on traceability

Change Request

Requirements

Analysis and Design

Implementation TestingValidation

Project Plan

nents or systems can be upgraded to a version within the same major
release with a higher minor release number without any noticeable
change in existing functionality.

Incremental or point release
This does not add any new features or functionality, and is purely used to
address and correct defects within the system or component. It will not
modify any interfaces or specified behaviour.

Typically this results in a version number of the form X.Y.Z, where X
indicates the major release number, Y the minor release number within
that major release and Z is the point release number. The version may
also be clarified by further alphanumeric characters highlighting certain
types of intermediate release during the development process such as:

Development or build release
Used for development use, this represents a stable version of the system
on which further development should occur. It provides a stable version
of core functionality where key aspects may be overridden by function-
ality being implemented and developed locally to each developer or
development team.

Snapshot release
A development release which is tagged within the source code control
system.

Release candidate
A snapshot release which is built and installed into the quality assurance
(QA) environment for full testing and quality assurance. This may lead to
a release into the production environment.

Alpha release
A snapshot release for development testing that has not yet been fully
tested.

Beta release
These are previews of releases that can be used to showcase new,
not fully tested functionality, or to provide an early fix to software
defects. They are also release candidates for testing in the QA environ-
ment, having passed initial testing in the build environment. While beta
releases should not be used as an excuse to deliver poor quality, they are

247

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

delivered ‘as is’ with no guarantees concerning quality until they have
been fully certified by the quality assurance and testing process.

Hot fixes or patches
Quick fixes to existing released code to address a major defect discovered
in the production environment. The changes incorporated into a hot fix
will usually be performed on a branch in the source code control system
that is associated with the current production release. These fixes, or a
more complete solution that will address this defect, will need to be
incorporated into the current mainline branch before the next release into
the production environment.

Major version releases are the most difficult to manage because they
are associated with changes to interfaces or the behaviour of the system.
Changes that impact the way in which the system integrates and inter-
acts with other external systems will require the co-ordination of the
release with associated changes in those other external systems. This
close-coupling dramatically escalates deployment risk by increasing the
number of systems within the organization that will need to be upgraded
at the same time. Upgrading systems is inherently risky, as any modifica-
tion to a system may introduce unforeseen problems or defects.

DEVELOPMENT, BUILD AND TESTING ENVIRONMENTS

The build process is concerned with the conversion of software into an
executable system. Tools exist which will automate the build process and
determine the various dependencies of sections of code on each other, so
that this process is performed in the correct order.2,3

Development, building releases, testing and UAT should ideally all be
performed in different logical (but not necessarily different physical) envir-
onments. This logical separation will prevent changes in one environment
impacting one of the other environments in an unexpected manner. Each of
these environments has different characteristics that are aimed at increasing
productivity within that environment, but which could undermine the
tasks being performed in the other environments if they are not separated:

Development environment
Characterized by the development of code checked out from the source
code control system, with individually customized developer environ-
ments, sharing some common, stable functionality provided by the devel-

RISK MANAGEMENT SYSTEMS

248

opment release that is generated in the build environment. Local unit and
other tests will be executed in this environment to ensure that new func-
tionality does not destabilize the build release of the system.

Build environment
A consistent single view of what is currently classified in the source code
control system as being a stable version of the system under develop-
ment. Each individual developer’s copy of the system will eventually be
checked in to the source code control system and combined to produce a
group development copy that must be validated as being stable and
correct. This copy then becomes the project’s new development release
that is used as the basis for ongoing development changes. This process
is known as migration. Any code that is not within the development
release branch (which may be the same as the mainline) of the source
code control system or is local to a developer will not be accessible in this
environment.

The build of the system in this environment therefore ensures that
unexpected functionality does not inadvertently enter into the stable
build of the system. The results of this build should be automatically
tested to ensure that there are no regressions or failing functionality.

249

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

Figure 9.5 The different software environments used within a project

Development
Environment

Build
Environment

QA
Environment

UAT
Environment

M
ig

ra
tio

n

R
el

ea
se

 C
an

di
da

te

U
A

T
 R

el
ea

se

Production
Environment

R
el

ea
se

This process should also publish to the project team the results, errors or
warnings from the process. It may also apply a build tag to the files
included within the source control system, once the build is accepted as
stable, in order to produce a snapshot release, as well as generate any
automated documentation. The build process may even show what
changes have been committed since the last build, together with the
name of the developers responsible for the change. This can be impor-
tant in identifying potential culprits of build breakages when the system
fails to build or tests fail. By tagging the files used within each snapshot
release traceability can be improved, permitting defects and unexpected
behaviours to be associated with given versions of the code within the
source code control system. It also permits changes that result in non-
stable builds being quickly identified and removed if necessary, as well
as the ability to build the system as of some previous snapshot release in
the event of a serious breakage in the build process.

QA environment
An environment devoid of any development, build or system tools that
are not available within the production environment. Release candidates
of the system are installed into this environment and fully tested. Its aim
is also to verify that any installation scripts or instructions are correct
and that there are no unexpected dependencies on features of the devel-
opment or build environments, such as unexpected or outdated versions
of external libraries or components. The environment should be iden-
tical or very similar to that of the production environment and is there-
fore also the obvious place for performance and load-based testing.

UAT environment
The UAT environment is similar to the QA environment. Once a release
has been verified in the QA environment by the project team, it will
then be tested by the end users or some team responsible to them. This
acts as a final independent check to ensure that the release meets any
specified requirements and will be accepted by the end users. The UAT
process is often formalized through a sign-off process where comple-
tion of the specified user acceptance tests derived from the require-
ments marks the formal completion of the delivery of a project.
Traceability of requirements and a well-documented sign-off process
confirming the requirements, as well as managing expectations
throughout the life of the project, can be key to ensuring that this
process can actually be performed.

RISK MANAGEMENT SYSTEMS

250

Production environment(s)
The deployment environment(s) where the system is finally used by the
end users. This should be an environment that is physically different
from any of the others to ensure that the system and its performance are
not adversely impacted by any development activity.

In order to ensure consistency between the results of this process in each
of the development and build environments, a single build process should
be implemented which customizes itself to the specifics of each environ-
ment. Utilizing a number of different independent build processes in the
individual developer and then build environments will only increase the
amount of maintenance required for this process, as any change will need
to be made repeatedly for each individual environment. This will increase
the likelihood of inconsistencies entering into each process resulting in
different outcomes and behaviours in each environment.

SOFTWARE DEPLOYMENT

The final stage of a project is the deployment of the system to the end
users. It is a critical point in the project, as it does not matter how good
the system is, if it cannot be utilized then the project is guaranteed to fail.
As a result, deployment should be included as an explicit task within the
project plan and planning and risk assessment performed from the start
of the project. Deployment introduces two new groups into the process,
in addition to the end users:

Support staff
Front line support for the system, addressing any known issues (and how
they can be worked around), general usage of the system and configura-
tion issues.

System administration staff
Support of the underlying infrastructure and third party software such as
operating systems, middleware, databases and so on as well as adminis-
trative tasks such as performing backups and installations.

In order for each of these groups to be able to perform their tasks, they
must be adequately trained and informed of their role in the operation of
the system. If these support and system administration operations are
centralized or standardized within the organization then they will also

251

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

introduce constraints on the project, dictating how the system must be
packaged for installation, what third party software may be utilized and
whether it can be supported, and what form any training and documen-
tation should take.

Initial deployment

The initial deployment of a system is usually associated with some larger
business process re-engineering effort that will result in new processes
and workflows being implemented within the organization. This will
require staff training and perhaps even new skills. The impact of this
entire process and any possible associated risks must be carefully assessed
and monitored if the project is ultimately to be deemed a success.

The first deployment of a system will also be associated with addi-
tional integration and data migration tasks concerning how the system is
to be made available or rolled out to users. This deployment may be
performed either incrementally or in a single step or big bang. The risk
profiles and costs of these two approaches differ dramatically.

Systems can be categorized according to their user base and the function-
ality they provide to that user base. These two dimensions provide the major
options for incremental system deployment:

■ Deliver system to a subset of users or location by location

■ Deliver only a subset of the total functionality

■ A combination of both of the above.

The degree to which functionality can be delivered incrementally will
depend on which functionality is viewed as being critical to the business
process and whether the system design permits any functionality to be
delivered in an incremental manner. This will also depend on whether
subsets of functionality may be easily integrated into the current infra-
structure and used to support or extend existing system functionality.

Incremental delivery enables new system behaviour to be closely
monitored for a few users or localized pieces of functionality. This will
limit the impact of any unexpected system failure and so reduce
deployment risk. If the roll out is to a subset of users, there is also the
option to transfer processing back to the old system in the event of a
system failure, provided any relevant information can easily be trans-
ferred between the old and new systems. This is not an option if the old

RISK MANAGEMENT SYSTEMS

252

system (or blocks of functionality) are completely decommissioned.
Incremental delivery does, however, result in additional costs from main-
taining and supporting both the new and old systems. It can also greatly
complicate data flows and any data migration strategy into the new
system (if this is required), which again increases deployment risk.

Rolling back functionality

At some point the deployment process will fail or a release will be installed
that is unstable or does not support some critical functionality. Resolution
of this problem is then either to provide a manual fix or patch to the new
system that enables it to be installed and operate correctly within the
production environment, or to roll back the new installation, leaving
the system and functionality in its previous state. The roll back process is
one that must be carefully managed; any installation process must ensure
that the version of the system being replaced can still be made available in
the event of an emergency. The upgrade process does not, however, just
impact the internal functionality of a system. It may also be associated with
changes in the internal state and persistence of information as well as
changes in interfaces or the representation of external data (Figure 9.6).

The new version of the system may require some of the persisted data
to be modified, augmented or reorganized. Problems will arise in the roll-
back process if the changes to this data or the interfaces to external
systems are not compatible with those of the previous release. If this is
the case, these changes must be reversed, relying on any data transfor-
mation to be reversible or on the ability to replace it with a copy of the
persisted data before the installation of the new version. Time is often
critical in such decisions, and the implications of each approach need to
be carefully considered. The safest manner to support this process is to
back up or save all aspects of the old system, which will be replaced or
modified so that they can be reinstalled if necessary. If the new system
has modified information then rolling back to the start-of-day configura-
tion will require any persisted changes to be reapplied to the system. This
may need to be performed manually, which will not be a feasible option
if it results in a huge amount of effort, or for any resulting logged data
updates to be automatically replayed on the old system. Designing such
features into a system can significantly reduce deployment risk.

Deployment risk, associated with co-ordinating and rolling back major
releases that impact several other systems within the organization, can
also be reduced by ensuring that the system to be deployed is capable of

253

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

supporting the interfaces and behaviour of the previous major release as
well as that of the new release. Configuration information may then be
used to enable the system to support whichever interfaces and behav-
iours are required. This loosens the coupling between systems, permit-
ting the roll back of an external system to occur without also requiring all
associated systems be rolled back.

Global deployment

System installation is a complex task, especially when multiple locations
and pieces of hardware are involved. Manual deployment processes for
installing and updating a system are only an option when there are
a limited number of sites to which any system must be deployed. Such
processes are usually prone to error, expensive to perform and unaccept-
ably slow. Although patch releases to address critical system failures may
need to be performed manually, the intention should always be to auto-

RISK MANAGEMENT SYSTEMS

254

Figure 9.6 Changes arising from the upgrade process

Version A Version B

Functionality A Functionality B

Internal State/Data A Internal State/Data B

Interfaces/

External State/Data A

Interfaces/

External State/Data B

U
p
g
ra

d
e

P
ro

ce
ss

mate this process. This is especially important for systems in financial
organizations, due to the frequent and rapid requirement for updates to
functionality. Because financial software is often deployed globally, this
installation process must be able to deal with timed releases in the future,
when trading or risk processing is not occurring. The global nature of
financial markets across different time zones means that there is rarely a
single point in time when a system can be rolled out simultaneously to all
locations without impacting the business operation in one of them.
Because of this a phased roll out around the globe is often required. The
installation process must therefore be robust and able to resolve local
installation issues and problems, as well as being able to deal with periods
when different locations may be using different versions of a system.

Release notes

Release notes are used to inform those external to the project of the
changes that have been made since the last version of the system. These
changes will arise from differences in the deployment of the system or
corrections to defects and change requests resulting from the completion
of a number of externally or internally defined SPRs. The release note
should be a simple document laid out in a standard format that includes
the following information:

■ System summary and other identification information, including
release version number

■ Installation notes, including system requirements

■ New features and enhancements (linked to externally defined SPRs)

■ Bug fixes (linked to SPRs)

■ Known problems and ‘work arounds’

■ Notes and contact information, including details on user training or
documentation updated.

These release notes may be sub-divided depending on the group they
are aimed at, providing different details of information to the support
staff, system administrators or users. Release notes should also be
distributed in advance of any installation in case they highlight potential
problems for these groups which will need to be resolved before the
release can occur.

255

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

TOOLS AND PROCESS AUTOMATION

Tools and process automation can and should be used throughout a soft-
ware project. This not only helps to enforce standard approaches and
procedures within a project but can also reduce the time and risk associ-
ated with performing certain repetitive tasks, as well as enhancing
resource productivity. The benefits of any tools must, however, be
weighed against any additional overhead in utilizing them. A simple
checklist to be considered is:

■ Administration requirements

■ Likely productivity improvement

■ Cost of acquisition and maintenance

■ Learning curve requirements

■ Previous experience or recommendations from other project teams

■ Support for the tool, both internally and externally

■ Ability to customize operations as needed

■ Limitations of how the tool may be used, accessed and integrated with
other tools

■ Likely increase or potential for errors and therefore additional project
risk in using the tool

■ Ease of use and performance considerations.

The danger in not automating repetitive tasks, especially if they are
likely to become more resource intensive during the project (such as with
testing), is that they will be performed less and less rigorously as the task
burden increases. This is especially likely to occur when pressure to
deliver is greatest at the end of a project and when there is the least
amount of time to address such issues. In the QA and testing process, this
can lead to poor quality testing which dramatically reduces software
quality and increases the risk of project failure.

The level of automation can range from the generation of code frag-
ments from analysis and design diagrams through to the authoring of
test cases from specifications of user interaction with a system. The
reverse process of generating documentation directly from code frag-
ments can help increase traceability and ensure that both documentation

RISK MANAGEMENT SYSTEMS

256

and code are always kept synchronized. Although such automated
processes can derive information about what a design or section of code
does, it is often difficult to understand the reasons why or define the
problem being solved without further developer input. This will funda-
mentally limit the degree to which the entire software lifecycle can be
automated and the degree of reverse engineering that can be performed
within a project. Tools such as debuggers, memory management analysis
and performance monitoring tools are key to any software project and
ideally should be standardized across all projects within an organization.
This will also facilitate the reassignment of resources between projects.

Notes

1 D. Bolinger and T. Bronson, Applying RCS and SCCS: From Source Control to Project
Control (O’Reilly & Associates, 1995)

2 J. Tilly and E. Burke, Ant: the Definitive Guide (O’Reilly & Associates, 2002)
3 A. Oram and S. Talbott, Managing Projects with Make (O’Reilly & Associates, 1992)

257

DEPLOYMENT
CONFIGURATION AND

CHANGE MANAGEMENT

ch
ap

te
r

n
in

e

This page intentionally left blank

PART III

Trends in Risk
Management
Process and
Technology

This page intentionally left blank

261

CHAPTER 10

The future of risk
management
technology

Current market conditions at the turn of the new millennium make it
difficult to predict the future for risk management and its associated
systems. Uncertain and volatile environments are, however, likely to
increase the importance of risk management as the organization’s
primary defence against losses arising from this uncertainty. The
merging of many large financial institutions in the 1990s has resulted in
a more competitive financial marketplace, just as the world has been
exposed to economic and political stresses and uncertainties. The lower
trading volumes seen in some markets have highlighted the importance
of controlling fixed costs, whereas the relative buoyancy of the fixed
income market1 has highlighted the need to maintain a diverse market
risk exposure in order to ensure overall profitability.

The future is likely to see a continuance of this focus on risk manage-
ment, costs and operational efficiency. The desire to reduce costs may
lead to greater outsourcing and the transfer of certain operational risks to
third parties. Offshore sites have highlighted the comparative advantage2

of using highly trained staff in lower cost regions such as India, China
and Russia. Some of the trust and operational risk issues are still to be
worked out and there may well be some realization that the actual risks
in such an approach are higher than anticipated.

The drive for efficiency and lower costs has been a major factor behind
electronic trading and the creation of electronic rather than physical
marketplaces or methods of interaction. This has resulted in increased
automation of many trading processes and led to very different business
models from those used in the past. Some of these new electronic market-
places such as electronic communication networks (ECNs) and alter-
native trading systems (ATS) first appeared in the mid-1990s in the US as
an additional, lower cost and extended trading hours marketplace for
equities trading. They have extended to many different types of instru-
ment (covering fixed income bonds, credit default swaps, FX) and have
broken down the dealer monopoly, permitting clients to trade directly
with each other without the use of an intermediary. They have also
increased competition by having a number of competing brokers
displaying prices in a single electronic market. As well as adding consi-
derable transparency to the markets, these electronic markets have
helped reduce transaction costs and have increased trading volumes.

The move to electronic marketplaces and the provision of (or ability to
provide on demand) firm tradable prices, rather than indicative prices on
market data provider screens or in telephone quotes, has added additional
complexity to the trading operation. Although they have removed some of
the volume constraints and risks associated with excessive manual inter-
vention in the trading process, they have also introduced new operational
risks. Rather than losses arising from manual errors, they now arise from
defects and failures of the technology used to automatically generate prices
or commit to trades, as well as the possibility of electronic failure in the
communication links or electronic marketplace itself.

There have been a number of embarrassing events arising from either
system related failures or errors arising from the interaction between users
and their supporting technology.3 The focus on developing safe systems
and processes where a single failure in the workflow cannot result in a
significant loss is only likely to become more important in the future. Many
of the inefficiencies and manual interventions that provided the opportu-
nity and time to detect potential errors have been automated away. The
speed of current markets has removed the opportunity to retract incorrect
trading instructions, making it even more important that everything is
performed correctly, first time.

The growth in the number of electronic marketplaces has also
presented three additional major challenges on the trading desk:

1. Trading on multiple electronic market places at once.

2. Trading high volumes at high speeds.

RISK MANAGEMENT SYSTEMS

262

3. Integrating market data, risk management information and trading
functionality into a single view. This must be able to manage the
potentially rapidly changing positions, risk exposures and trading
conditions.

These changing demands and the likely ongoing amendments to the
Basel 2 Accord will keep risk management firmly in the spotlight for the
foreseeable future. Some of the implications of Basel 2 are still not fully
understood by the markets. What this implies is that systems developed
to address current perceived risk management needs are likely to
rapidly evolve as the implications of the framework become clearer and
evolve over time. This will increase the requirement for any risk
management infrastructure to be extensible and to address changing
market requirements.

There has also been a step change in the way people view risk and an
increasing interaction of risks in different markets. Historically, financial
institutions and regulators have thought in terms of different categories
of risk that were independently managed. Depending on the type of
trading, this defined which type of risk tended to dominate and would be
the focus for risk management. Current market conditions, the cross asset
class nature of many complex structures and the current mix of risk
within an organization are, however, resulting in a reassessment of this.
Corporate bond trading is now intricately connected with the trading of
credit derivatives, government bonds and swaps. What we are seeing is
a convergence in the trading of what were historically seen as separate
business areas.

RISK MANAGEMENT IN THE FUTURE

The different categories of risk interact in a complex manner, impacting
the total risk exposure of the organization (Figure 10.1). For example,
market conditions tend to drive trading volumes, which in turn impact
operational risk. Similarly, economic conditions impact interest rates,
which in turn can affect the cashflows and solvency of companies and
hence their credit quality.

It therefore seems likely that the risk management system of the
future will need to address this increasing complexity in how risk is
perceived and be able more efficiently to aggregate, model and combine
risk information from across the organization. It will then be possible to
manage business areas based on the total risk taken, rather than on

263

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

a subset which is seen as being the dominant risk. When trading a given
financial instrument, there will always be a combination of market,
credit and operational risk:

■ Market risk: changes in the value of the instrument arising from
changes in market variables

■ Credit risk: changes in the value of the transaction arising from the like-
lihood of counterparty default or changes in the underlying credit
quality of the company the instrument is based upon

■ Operational risk: potential losses arising from operational failures in the
trading, management and settlement of the instrument.

Often a separate group or department will manage the risk associated
with each of these categories. Market risk and some types of pricing-
related credit risk are typically managed by a market or corporate risk
function; other types of credit risk and credit exposure by the credit
department; and finally, operational risk by newly formed operational
risk groups. Given their interrelation, it seems highly unlikely that orga-
nizations will be able to maintain this division of responsibilities for
different types of risk. Assessing risk exposure by examining a single
type of risk, asset class system or geographical location will always be
misleading and leaves the organization vulnerable to an unexpected

RISK MANAGEMENT SYSTEMS

264

Figure 10.1 The interaction of different types of risk

Operational Risk

Market Risk Credit Risk

combination of correlated market, operational and credit risks. Similarly,
regulators now require significantly more complex analyses and
reporting that cannot be undertaken without sufficiently sophisticated,
highly integrated risk management technology.

The advantages of having a complete, consistent and current view of
risks within the organization should be clear. Once a framework exists
for obtaining this information and analysing it, there are a number of
additional key competitive advantages that can be obtained:

■ The risk information can be used to improve the manner in which
the organization is run and improve how risk capital is allocated.
This moves the risk management framework from one which is a
purely defensive measure, ensuring all potential losses are under-
stood and monitored, to one which adds economic value to the
organization.

■ Reusing the functionality embedded in the risk management frame-
work to add value to the organization. If an open framework
is utilized that enables functionality to be easily reused and deployed
in other areas, then this capability can be leveraged in new directions.

In an increasingly competitive marketplace, financial organizations
are trying either to compete against each other on cost or to provide
additional added value services to their clients. Risk management is
not only important to financial organizations, it is also important to
their clients. If an organization has invested a large amount of money
and effort in developing comprehensive risk management function-
ality, then making some of this functionality available to its clients
could provide an important additional service. It could enable clients
to monitor, in real time, the status of any of their financial transactions
and the amount of risk they are exposed to. To be able to achieve this,
the system must have been developed in a scalable, flexible and
modular fashion that enables certain information and functionality to
be made available over different delivery channels such as the
Internet, with minimal additional cost.

The previous generation of ‘closed’ black box risk management
solutions could never achieve this. However, the move towards scalable
frameworks with standardized and reusable functionality means that the
additional cost compared with the potential customer benefits may
make this a reality in the future.

265

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

RISK TRANSFORMATION AND COST BENEFIT ANALYSIS

Risk mitigation, system and process change is all about risk transforma-
tion and cost benefit analysis. Rather than risks being completely
removed, the actual outcome is usually that the risk to be mitigated is
reduced but that some of it is transformed into a different, and hopefully
easier to manage type of risk. Whether any transformed risk is actually
easier to manage will depend on the organization. This risk transforma-
tion process again highlights the interaction between market, credit and
operational risk. For example, if traders offset some market risk in a
portfolio by entering into a customized financial transaction directly
with a client, they will reduce market risk but increase credit risk arising
from potential counterparty exposure. They may also increase opera-
tional risk if the systems and processes are ill equipped to handle this
new transaction.

This highlights the importance of considering the total risk associated
with a transaction and how any potential return may change and associ-
ated total risk may vary through risk mitigation. Analysing the cost and
benefit of possible risk mitigation strategies should therefore consider
any new risks that will be introduced, as well as the cost of mitigating
this risk (Figure 10.2).

Previously, technology has been seen as a key source of competitive
advantage for financial organizations and an important way of removing
operational risks associated with excessively manual processes. However,
many organizations are reassessing the affects of this risk transformation

RISK MANAGEMENT SYSTEMS

266

Figure 10.2 The cost–benefit equation

Cost Benefit

Risk

and how project risk and technology risk may now be significant sources
of risk that they are ill equipped to manage.

This reassessment has partly been driven by a realization that many
projects have resulted in costly failure and the defect levels and flexibility
of many systems have resulted in those systems needing to be replaced
a short period of time later. Far from achieving competitive advantage or
reducing operational risk, many organizations have instead ended up
with significant losses from project or system deficiencies and minimal
benefit. Managing this aspect of risk within the organization is likely to be
of even more importance in the future. It will require improvements in the
way projects are managed and the use of more appropriate technologies
and development processes that reduce project risk and provide more
cost-effective and higher quality solutions. These solutions will need to
evolve with the organization and ensure that it can maintain its competi-
tive position by rapidly responding to any changing requirements.

STRATEGIC VERSUS TACTICAL

Strategy is concerned with the bigger picture of where we are today,
where we wish to be in the future (in order to be profitable and to
survive) and the gap between these two views of the world. Any chosen
strategy should address the bridging of this gap. Tactical approaches on
the other hand focus more on current requirements to address immediate
needs and ensure short-term survival.

Approaches to developing risk management solutions are often catego-
rized as being either tactical or strategic in their scope. Typically what is
meant is whether the focus is short or long term. When the focus is overtly
short term, the tendency is for longer term objectives to take a secondary
focus, resulting in strategic drift away from where the organization wishes
to be in the future (Figure 10.3). This can often lead to a case of ‘mortgaging
the future for quick gratification today’. This need not always be the case
and links back to the concepts of taking a balanced approach.

Any project should not only consider short-term needs in isolation,
but also ensure that any solution can evolve to address longer term
strategic requirements. As a result, strategic business goals should
drive the strategic IT goals within the organization, ensuring that
current technology can evolve to support the business objectives
(Figure 10.4). It is important to view Figure 10.4 correctly; technology
should support business goals and be driven by them, not necessarily
the other way around.

267

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

RISK MANAGEMENT SYSTEMS

268

Figure 10.3 Strategic project drift

Where organization is today

Where organization wishes
to be in the future

Strategic Gap

Time

Tactical Fixes Over Time

B
us

in
es

s
St

ra
te

gy

Figure 10.4 The strategic road map

Strategic
Business Goals

Strategic
IT GoalsDrive

Support

The IT strategy should define a clear upgrade path that extends
existing technical capabilities within the organization both in terms of the
delivery of new technology as well as supporting the current technology.
The IT strategy should not require the complete re-engineering of
existing systems, which would be a prohibitively expensive, time-
consuming and high risk strategy. Instead it should permit existing
systems and technology to be leveraged and reutilized in an incremental
evolutionary manner towards the desired strategic technical architecture.
Previous approaches of viewing software as a disposable commodity
have resulted in expensive and high risk approaches to system develop-
ment. Given the current cost and time constraints in implementing new
solutions, this is unlikely to be acceptable in the future.

STRUCTURAL PROJECT RISK

The track record of many projects within financial organizations is gener-
ally not good; many fail to deliver what is expected from them. Although
total project failure is not that common, many projects end up failing in
a strict sense in that they are over budget, deliver less functionality than
initially specified, take longer than expected, or are difficult or costly to
maintain and cannot evolve with the organization.

This is not a problem that is purely confined to financial organizations.
If most technology projects are assessed against their original project
requirements, an amazing number can be judged to have failed. Phillips
found that, depending on how strict a definition of project failure is used,
over 80 per cent of software projects can be judged to have failed in
some manner.4 There are, however, common reasons for project failure,
such as:

■ Inadequate management of requirements and scope creep

■ Ambiguous and imprecise communication among team members,
exacerbated by the different backgrounds and levels of understanding
within the team

■ Undetected inconsistencies in requirements, design, and implementation

■ Insufficient testing

■ Inadequate or qualitative (rather than quantitative) assessment of
project status

269

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

■ Failure to identify and manage risk

■ Uncontrolled change propagation and lack of any change manage-
ment process

■ Excessively manual processes and procedures.

This situation is problematic for many organizations; they understand the
need to improve their risk management systems but are disheartened by the
observed failure rate of many IT projects. Rather than managers aligning
themselves to projects that have a high likelihood of failure and will
adversely impact their careers, there is a tendency to make do with existing
functionality, enhancing it with low risk but ineffectual modifications.

The cognitive biases mentioned in Chapter 1 also lead to organizations
oscillating between developing systems internally and outsourcing this
development. Whether the last project failure was associated with an
in-house or outsourced project, often drives the decision for the next project.

Although many organizations will compare the cost of the two
approaches, few do this in a structured manner and address the issues of
risk transformation and strategic risk. Outsourcing may remove the risk
of internal project failure but this has been transformed into the risk of
external project failure and strategic risk, arising from a divergence
between the vendor’s and the organization’s view of the future.

Whichever approach is taken, it is important that the organization has
the capability to manage the delivery of a risk management solution, be
it internally or externally developed. There are many KRIs which can
indicate that there is a high level of inherent risk associated with projects
within the organization and that the project management process should
be reviewed for possible failings. Some of the most obvious KRIs are:

■ Frequent project failure

■ Long lead times between enhancements

■ Irregular frequency of releases

■ Many incompatible systems

■ Multiple failed RfP processes.

Projects in crisis tend to abandon defined processes and the key moni-
toring and planning tasks in an effort to focus all resources on delivering
the project. This is often just at the point when assessing and mitigating
risk is vital to ensuring the successful delivery of the project.

RISK MANAGEMENT SYSTEMS

270

Any project manager in an environment that is exhibiting signs of high
levels of structural project risk should stop and assess the underlying
causes before proceeding. It is likely that, working within the same organi-
zational constraints and using similar resources, future projects will also
fail unless remedial action is taken. This is an important lesson of risk
management; if a risk assessment highlights a significant level of risk
then it is likely that, unless mitigating actions are taken, events will occur
that make that risk a reality.

Because each organization is unique, it is difficult to take a universal
approach and apply a generic RfP or software development approach
that is guaranteed to work. Instead, the unique process that works for
a particular organization must be ‘discovered’ and developed over
time. Once an approach has been proved successful within the organ-
ization, it is important to leverage this experience and apply it to other,
similar problems.

The view of unique projects that address unique business requirements
combined with common frameworks that address common process issues
found within the organization can help leverage generic project exper-
iences. This should lead to standardization in aspects of project man-
agement, development processes, testing and infrastructure that are

271

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

Figure 10.5 The move towards common frameworks

Technical Infrastructure and Architecture

Testing, Quality Management and Deployment

Development Processes

Project Management

Individual

Projects

Individual

Projects

Individual

Projects

Business Area
Business

Area

C
o

m
m

o
n

 F
ra

m
ew

o
rk

s
U

n
iq

u
e

P
ro

je
ct

s

indeed common across the organization. By standardizing these aspects
of the projects, common resource pools can be utilized across certain
aspects of different projects, reducing resourcing issues.

What is important is to apply standardized processes and resources
where there are generic problems, but ensure that each project contains
specific resources, skills and processes to address the unique require-
ments of each business area problem (Figure 10.5). Projects can just as
easily fail through the use of too generic an approach and resources that
cannot address or understand the specific issues within the business area.

FLEXIBILITY AND MANAGING THE UNKNOWN RISK

Probably the most dangerous risk to an organization is the risk that it
knows nothing about. van der Heijden characterizes events into three
different types.5

1. Unknowables: Events that cannot even be comprehended

2. Structural uncertainties: Events which can be comprehended but which
do not happen frequently enough to be assigned a probability
(for example stock market crashes)

3. Risks: Events that happen with frequent enough regularity for a prob-
ability to be assigned (for example daily price movements) and the
probability of a loss of a given size occurring to be calculated.

The impact of these different types of events can be managed by calcu-
lating the probability of losses arising from any known risks, scenario
testing for structural uncertainties and having a flexible environment and
tools to spot new (as yet undefined or unnoticed) unknowable risks. As
a result, it is especially important for the risk manager to be looking for the
weak signals that indicate new sources of risk.6 These will be hidden among
all the background noise of other (known) risks within the organization.

New sources of risk may arise from new types of residual or basis risk
arising from implementing different business models and changes in
external market behaviour leading to imperfect hedging or management
of existing risks. The key requirement will then be to ensure that internal
processes and systems can be quickly enhanced to capture information
concerning these new risks so that they can be adequately managed.

A flexible and extensible risk management system will therefore be
essential to enable existing information and functionality to be extended

RISK MANAGEMENT SYSTEMS

272

to monitor new risks arising externally from changes in the market or
regulatory environment, and internally from changes in the organ-
ization’s business model.

MAINTAINING COMPETITIVE ADVANTAGE

The nature of the software delivery process is that it can take a significant
amount of time to develop and install a new system. While this can be
acceptable in a relatively static environment, the dynamic nature of
financial markets means that this is not an option. In order to capture
potentially lucrative trading opportunities, financial organizations need
to be able to modify their processes and systems. As a result, ‘build once
and never change’ is not an option.

Spreadsheets have often been seen as the solution to providing the ulti-
mate flexible environment for performing ad hoc calculations and mani-
pulating and managing information. Ad hoc analysis and complex formulae
can easily be implemented in a familiar and powerful environment. In their
proper place, spreadsheets are the ultimate adjunct to the risk management
process. However, they can result in an environment that:

■ Is difficult to scale

■ Offers poor performance; spreadsheet macros and cell calculations
perform poorly compared with other types of implementation

■ Lacks the robustness and failover capability of other approaches

■ Has poor levels of security; typically an all or nothing approach

■ Is a difficult one in which to implement controls, audit trails,
versioning or monitor changes

■ Is difficult to integrate with, resulting in excessively manual processes.
Even where integration occurs, simple changes in spreadsheet format
can result in the process failing. This can dramatically increase opera-
tional risk

■ Only allows single user access/updating, which can lead to problems
in effectively sharing information within the spreadsheet.

The major deficiency is probably the significant effort required to control
and monitor the data and calculations performed within the spreadsheet.
Their flexibility means that significant effort is required to ensure that the

273

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

spreadsheet contains no errors or omissions and is not modified so that
errors are introduced into it. This function often provided through labo-
rious and expensive spreadsheet audits.

Some of these issues can be addressed by performing some of the more
complex or computationally intensive processing in external components.
Often these external components have been installed locally leading to
a problem on Microsoft platforms known as ‘DLL hell’,7 whereby issues
arise in using different versions of these components required by the
different applications. Installing a new component or dll required by one
application then tends to break another, leading to a support and mainte-
nance nightmare.

DEVELOPMENT APPROACHES

The limitations of traditional development approaches have been
brought to the forefront by an increasingly demanding and dynamic
marketplace. Financial organizations need to obtain improved returns on
their investment in technology and reduce the risk of project failure, but
be able to rapidly produce customized and flexible solutions. This is
quite a challenging set of requirements.

In order to obtain a better return on any investment in technology the
software development process must either:

1. Improve resource productivity through the use of more efficient tools,
programming languages and development environments

2. Reduce the amount of software to be developed through reuse of
existing software or next generation programming languages that
reduce the amount of software to be written.

The need to utilize customized solutions has always meant that a
reasonable percentage of a system must be written or modified to meet
the precise requirements of the organization. Although more efficient
tools and development environments have helped to improve develop-
ment productivity, recent focus has been on trying to reduce the amount
of software that needs be written. There have historically been two
extremes of approach to this; to utilize application frameworks or soft-
ware libraries (Figure 10.6).

Application frameworks provide both design and code reuse in
a common framework that enables the application developer to insert

RISK MANAGEMENT SYSTEMS

274

application-specific functionality at certain defined points in the frame-
work. This approach has been used by many product vendors, who
provide a system that enables client-specific functionality, such as financial
calculations and risk measures, to be inserted into the framework.
Libraries provide the other extreme of building blocks of common func-
tionality that can be utilized in a complete solution. When building a risk
management solution, the application developer must develop the frame-
work into which these library building blocks are fitted.

Both these approaches have been problematic. The application frame-
work has provided high levels of reuse but insufficient customization
and flexibility; only certain functionality can be customized at certain
points in the workflow. Libraries have provided some levels of reuse but
a significant amount of the application must still be written.

Recently, a third approach has been utilized by many vendors and finan-
cial organizations, based on the reuse and development of components or
modules within a well-defined technical integration framework. These
components are connected together using the framework, which provides
the common technical functionality required to build large enterprise appli-
cations and enables large units of functionality to be reused.

Project risk can be dramatically reduced through the reuse of proved,
pre-tested functionality. The Meta Group found that reused code only

275

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

Figure 10.6 Approaches to developing risk management solutions

Application specific

functionality

Application specific

framework

Framework

Component or modular

solutions

Library

Integration framework

had 25 per cent of the defects found in newly developed code and
enabled solutions to be deployed 40 per cent faster.8 Having a reuse
strategy can provide a significant advantage to financial organizations
that need robust solutions that address the rapid product evolution seen
within the financial markets.

THE COMPONENT REVOLUTION

Component-based approaches to solution development have proved
particularly effective in building risk management solutions. Their
inherent flexibility results in extendable applications that can be quickly
developed. Time is increasingly being seen as a major source of competi-
tive advantage, so being able to enhance and deliver risk management
solutions in a timely manner is becoming even more important.

Component technology also offers a more risk-averse and cost-effective
approach. Gone are the large-scale expensive projects of the past. New
systems must:

■ Make greater use of prewritten code (that is improved reuse)

■ Leverage existing systems, reducing the amount of functionality to be
rewritten

■ Have better integration and less manual intervention, improving oper-
ational efficiency and reducing operational risk.

Components that provide the core functionality of a system will
enable developers to focus the majority of their efforts on building
applications which address the specific functional and workflow
requirements of the organization rather than generic system and busi-
ness functionality. Tailored functionality that gives an organization its
competitive advantage can be integrated with these common compo-
nents to quickly deliver customized solutions where a significant
proportion of the final solution is prewritten. Components that are
written once but used everywhere within the organization can also
resolve inconsistency issues in calculations and approaches to risk
management.

Traditional approaches to software development have led to the close
coupling of functionality, which is embedded into a single compiled unit
within an application. This has made it difficult to upgrade functionality
or to reuse and standardize approaches across the organization. The use

RISK MANAGEMENT SYSTEMS

276

of CBD permits customized systems to be developed that facilitate some
of these key requirements for any risk management solution; reusability,
flexibility and replaceability.

The concept of component-based development and component
technology has been with us for some time. CORBA, DCOM, COM�

have all supported this approach and have been around since the mid-
1990s. One may be forgiven for asking why, if the component-based
approach has existed for so long, there is not yet a flourishing market
for prewritten components? This was an issue raised by Grady Booch
in an article in 2001.9 He believed that one of the reasons for it was the
absence of an accepted technical infrastructure for component-based
development. It was not until the release of Java2 and the J2EE plat-
form in 1999 that there has been any truly enterprise-scale platform
standards for CBD. At this point Java moved from being ‘just’ a
programming language to being a true component model for building
enterprise-scale component applications. This was soon followed by
Microsoft’s announcement of .NET in 2000 (being the final evolution of
DCOM, MTS/COM� into Microsoft’s Distributed Internet Applica-
tions Architecture (DNA) and then onto .NET). The arrival of these
improved frameworks for developing component technology may
mark the beginning of the next major technical design revolution; the
commercial arrival of component technology. Although many within
the technology industry see the technical case as clear, the movement
to any new technology is often seen as high risk. It is therefore often
avoided unless there is some compelling event that increases the
importance of the component approach.

Booch also highlighted another reason why we have not yet seen a
flourishing commercial component market. The competitive advantage
that can be gained from an organization componentizing its assets
should mean that it would be better off using those components to domi-
nate the market rather than trying to sell them. This would tend to imply
that although we may see an increase in the private, internal market of
components within an organization, this might not evolve into a growing
public market.

The Component Based Development and Integration Forum
(www.cbdiforum.com) has noted a similar failure for a flourishing
component market to evolve. In its 8 May 2003 newsletter, it highlighted
the organizational structure issues that prevent enterprise-wide IT initia-
tives. These structure issues will also act as a barrier to high levels of
component reuse within an organization. To address these issues, the prob-
lems associated with relying on key services under the control of other

277

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

groups will need to be resolved. This trust and service guarantee problem
can be resolved, just as risk managers have had to resolve issues in
obtaining guarantees on the provision of data from around the organ-
ization for use in the risk management process. Whether they are willing to
continue this struggle in ensuring the provision of certain key functionality
and calculations is still uncertain.

According to Clemens Szyperski,10 an additional issue has been that
critical mass has not yet been reached in the component market. Once it
is reached, Szyperski sees a ‘vortex’ forming that will draw in tradi-
tional solutions. If a component-based solution can utilize a ‘best of
breed’ approach, with the most appropriate components used from
different vendors, they will be able to leverage off a shared develop-
ment effort that will rapidly perfect each individual component. Those
organizations who maintain a proprietary component approach will
fail to leverage the benefits from this shared development and increas-
ingly be sidelined.

It may be that the reuse argument for using component technology
will fail in the same way as it did for justifying object-orientated
approaches; only time will tell. Despite this, both component- and object-
orientated development approaches have provided improvements in the
efficiency and maintainability of software. It therefore seems likely that
they will both play a key role in developing risk management systems in
the future, even if they are not a panacea.

THE INTEGRATION AND INTERFACE GAP

The component revolution in some ways has complicated the integration
challenges within an organization. The current two dominant approaches
of J2EE and .NET will need to co-exist with previous component tech-
nology standards as well as a range of existing systems and legacy appli-
cations. This will further complicate the mix of technologies found
throughout the marketplace and within any specific organization, with
no single technology dominating. As a result, integration and interoper-
ability will become ever more important.

.NET is likely to dominate in the user environment because of its
ability to easily integrate with the existing Microsoft environment,
especially applications such as Microsoft Word and Excel. The flexibility
that the Microsoft Office environment provides for users to easily
generate customized reports and analyses, seamlessly copying infor-
mation from one application to another should not be underestimated.

RISK MANAGEMENT SYSTEMS

278

Because of this, if J2EE is used to provide middle-tier functionality, it
will need to easily integrate with .NET-based solutions. J2EE and .NET
are therefore likely to have to co-exist in many organizations.

The existence of two component environments does result in some
advantages; each is likely to want to try to dominate over the other
resulting in a competitive cycle of enhancements and improvements.

The integration issue is also important in determining whether
Szyperski’s arguments for the evolution of a public component technology
market will really evolve. This will require the ability to utilize components
from multiple vendors, and for these to seamlessly work together. The new
component frameworks are providing a number of standard mechanisms
for certain tasks, such as locating components and security, that will enable
different components to integrate more widely within an organization’s IT
infrastructure. This also relieves the components of the need to implement
such features in a proprietary manner, which can be a significant barrier to
integration. In the absence of common technology, data representations,
interfaces and rules for interaction, there is, however, an integration chasm
that must be crossed. Constraints concerning the ability to modify existing
legacy applications mean that trying to achieve a common approach may
never be possible. Instead, the concept of an integration layer that ensures
that components developed by different vendors or development groups
within an organization can interact may prove critical to the success of
component technology. Just as with EAI software, this will need to trans-
form between different data representations and manage different models
for component interaction. The overhead of achieving this integration must
not, however, result in unacceptable performance implications.

CONCLUSION

Developing a risk management system is not simply a question of
writing software. It requires a complex interaction of many different
people and skill sets within the organization. It also requires a deep
understanding of the problem, the ability to determine what needs to be
achieved and the ability to develop and execute a plan of action. The aim
of this book has been to provide an overview of the tasks that need to be
performed and some of the key aspects of risk management and software
development that will need to be understood. There are no ‘silver bullets’
for solving the many problems that you are likely to face, but hopefully
by understanding what some of the key issues are likely to be you will
be forewarned.

279

THE FUTURE OF R ISK
MANAGEMENT
TECHNOLOGY

ch
ap

te
r

te
n

Below is a list of ten key points to consider both when running a risk
management group as well as a project developing a risk management
solution. Risk is everywhere within an organization. What is important is
that those risks are identified, monitored and measured and their impli-
cations understood and mitigated if necessary.

1. Ensure there is a strong risk oversight group covering all the types of
risk within the organization. This oversight group will act as a sponsor
for the development of any risk management solution.

2. Ensure adequate awareness and training and the creation of a risk
aware culture.

3. Develop written policies and agreements of what needs to be
achieved or performed.

4. Assign clear roles and responsibilities.

5. Conduct a risk assessment and benchmark any approach.

6. Establish early warning systems to highlight increases in risk or
expected loss.

7. Establish adequate reserves and contingency plans.

8. Establish your risk appetite and risk limits.

9. Always take a balanced approach.

10. Continually identify, monitor, evaluate and mitigate risk.

Notes

1 M. Richards, ‘Merrill Lynch 2Q Earnings Rise 61 Percent’, Yahoo!News (15 July 2003)
2 R. Grant, Contemporary Strategy Analysis (Blackwell Business, 1995)
3 Finextra, ‘Traders head for the pits as Globex falls over’ (Finextra.com, 2 May 2003)
4 D. Phillips, The Software Project Manager’s Handbook – Principles that Work at Work

(IEEE Computer Society Press, 1998)
5 K. van der Heijden, Scenarios: The Art of Strategic Conversation (John Wiley, 1996)
6 D. Mercer, Marketing Strategy: The Challenge of the External Environment (Sage, 1998)
7 M. Loney, ‘Microsoft promises end to “DLL hell”’, ZDNet magazine (6 March 2003)
8 D. DiNunno, Reuse Productivity – IT Performance Engineering and Measurement

Strategies (Meta Group, April 2000)
9 G. Booch, ‘The illusion of simplicity’, Software Development Magazine (February 2001)

10 C. Szyperski, Component Software – Beyond Object-orientated Programming (Addison-
Wesley, 1999)

RISK MANAGEMENT SYSTEMS

280

281

Appendix

RISK MANAGEMENT SYSTEM PROVIDERS
AND CONSULTANTS

The risk management vendor marketplace contains a large number of
possible suppliers of risk management products, toolkits or consultancy
services. They cover risk throughout the hierarchy, from hedging on the
trading desk to complex portfolio analysis and VaR calculations. This
Appendix contains a list of some of those vendors categorized as
product, toolkit or consultancy providers. Those suppliers categorized as
consultants offer some level of consulting service rather than just profes-
sional services in implementing their product. Each supplier’s area of
expertise at the high-level risk management groupings of operational,
credit or market risks are then given. If you are looking for a supplier for
a specific requirement, a more detailed analysis of the precise coverage of
the sources of risk included (specifically instrument coverage for market
and credit risk) will be required. This information, however, tends to be
constantly updated as products and services are expanded to cover
current market requirements.

282

Company Type Website Operational risk Credit risk Market risk

Equity IR Comm

3V Finance Product http://www.3vfinance.com X X X

Accenture Consultancy http://www.accenture.com X X X X X

Acrys Consult GmbH Consultancy http://www.acrys-consult.com X X X X X

Acrys Consult GmbH Product http://www.acrys-consult.com X

Advanced Portfolio Technologies Product http://www.apt.com X X

AFA Systems Product http://www.afa-systems.com X X X

Algorithmics Product http://www.algorithmics.com X X X X X

Andrew Kalotay Associates Consultancy http://www.kalotay.com X

Andrew Kalotay Associates Product http://www.kalotay.com X

Anvil Software Consultancy http://www.anvil.com X X X

Anvil Software Product http://www.anvil.com X X X

Application Networks Product http://www.application-networks.com X X X

Ascendant Technologies Inc. Product http://www.ascendant-tech.com X X X

Ascendant Technologies Inc. Consultancy http://www.ascendant-tech.com X X X X

Axiom Software Laboratories Product http://www.axiomsl.com X X X X X

Barra, Inc. Product http://www.barra.com X X

Bloomberg Product http://www.bloomberg.com X X X

283

Brady Ltd Product http://www.bradyplc.co.uk X X X

C/S Solutions Inc. Product http://www.cs-solutions.com X

Calibrex International Consultancy http://www.calibrex.com X
Corporation

Calibrex International Product http://www.calibrex.com X
Corporation

Calypso Technology Product http://www.calypso-tech.com X X X X

Cap Gemini Ernst & Young Consultancy http://www.cgey.com X X X X X

Card Decisions Inc. Product http://www.carddecisions.com X

CMS BondEdge Product http://www.cmsbondedge.com X

Cognotec Product http://www.cognotec.com X X

COMIT Gruppe Product http://www.comit.ie X X X X

Credence Analytics (I) Pvt. Ltd Product http://www.credenceanalytics.com X X X X

dbs Financial Systems Ltd Product http://www.dbsfinsys.co.uk X

Decision Software Inc. Product http://www.dsoftware.com X

Digital Risk Solutions Ltd Consultancy http://www.digitalrisksolutions.co.uk X

Digital Risk Solutions Ltd Product http://www.digitalrisksolutions.co.uk X

Fernbach Software S.A. Product http://www.fernbach.com X X X

Financial Objects Toolkit http://www.finobj.com X X X X

FinancialCAD Toolkit http://www.fincad.com X X X

(Continued)

Company Type Website Operational risk Credit risk Market risk

Equity IR Comm

Fitch Risk Product http://www.fitchrisk.com X X

Fitch Risk Consultancy http://www.fitchrisk.com X X X X X

FNX Ltd Product http://www.fnx.com X X X

GFI Product http://www.fenics.com X

IBM Global Services Consultancy http://www.ibm.com X X X X X

Imagine Software Product http://www.derivatives.com X X

Integral Development Product http://www.integral.com X X X
Corporation

Intermark Solutions Product http://www.intermarkit.com X X X

Investment Support Product http://www.inssinc.com X X
Systems Inc.

IQ Financial Systems Product http://www.iqfinancial.com X X X X

Iris Financial Toolkit http://www.irisfinancial.com X X

IRIS Integrated Risk Product http://www.iris.ch X X X X X
Management ag

Kawaller & Company, LLC Consultancy http://www.kawaller.com X X

KWI Product http://www.kwi.com X

284

285

Lepus Consultancy http://www.lepus.co.uk X X X X X

Lombard Risk Management Ltd Product http://www.lombardrisk.com X X X X

Long View International Ltd Product http://www.lvi.com X X

MathCAD Toolkit http://www.mathsoft.com

Matlab Toolkit http://www.mathworks.com

Mathmatica Toolkit http://www.wolfram.com

MB Risk Management Toolkit http://www.mbrm.com X X X

Measurisk Product http://www.measurisk.com X X X

Methodware Product http://www.methodware.com X

Montgomery Investment Toolkit http://www.fintools.com X X
Technology Inc.

Montgomery Investment Consultancy http://www.fintools.com X X X
Technology Inc.

Murex Product http://www.murex.com X X X X

NumeriX Corporation Toolkit http://www.numerix.com X X X

Oasis Management Product http://www.oasismanagement.com X X

Oasis Management Consultancy http://www.oasismanagement.com X X X

Open Link Financial Inc. Product http://www.olf.com X X X X

OpRisk Limited Consultancy http://www.opriskconsulting.com X

Optionomics Corp. Product http://www.optionomics.com X

286

(Continued)

Company Type Website Operational risk Credit risk Market risk

Equity IR Comm

OptionVue Systems Product http://www.optionvue.com X X X
International, Inc.

ORC Software Product http://www.orcsoftware.com X X X

PFS TraderTools LLC Product http://www.tradertools.com X

Portiva Corporation Product http://www.portiva.com X

Portiva Corporation Consultancy http://www.portiva.com X

Principia Partners Product http://www.ppllc.com X X X

Providus Software Solutions Product http://www.providus.com X

Raft International Product http://www.raftinternational.com X X

Random Walk Consultancy http://www.randomwalk.com X X

RCS Riskmanagement Product http://www.risksys.com X X
Concepts Systems AG

Red2Green Canada Inc. Product http://www.red2green.ca X

Red2Green Canada Inc. Consultancy http://www.red2green.ca X

Reuters Product http://www.reuters.com X X X

Risk Reward Consultancy http://www.riskrewardlimited.com X X X X X

RiskAdvisory Software Inc. Product http://www.riskadvisory.com X

287

RiskAdvisory Software Inc. Consultancy http://www.riskadvisory.com X

RiskCare Ltd Consultancy http://www.riskcare.com X X X X

RiskMetrics Group Product http://www.riskmetrics.com X X X X

royalblue financial plc Product http://www.royalblue.com X

RxSoft GmbH Product http://www.rxsoft.de X X

SAS Institute Product http://www.sas.com X X X X X

SavvySoft Product http://www.savvysoft.com X X X X

Screen Consultants Consultancy http://www.screenconsultants.com X X X X X

Sophis Product http://www.sophis.fr X X X X

Standard & Poor’s Risk Product http://www.standardandpoors.com X
Solutions

Suite LLC Product http://www.suitellc.com X

Suite LLC Consultancy http://www.suitellc.com X X X X X

Summit Systems Product http://www.summithq.com X X X

Sungard Product http://www.sungard.com X X X X

Front Capital (Sungard) Product http://www.front.com X X X

Tamesis Ltd Product/ http://www.tamesis.com X X X X
Toolkit

TechHakers Inc. Toolkit http://www.thi.com X

288

Continued)

Company Type Website Operational risk Credit risk Market risk

Equity IR Comm

Tetrix Solutions Consultancy http://www.tetrix.co.uk X X X X X

The Kamakura Corporation Consultancy http://kamakuraco.com X X X X

The Kamakura Corporation Product http://kamakuraco.com X X X X

Theoretics Inc. Product http://www.theoretics.com X

Trema Group Toolkit http://www.trema.com X X X X

Triple Point Technology, Inc. Product http://www.tpt.com X

Ubitrade Product http://www.ubitrade.com X X X

Wall Street Systems Product http://www.wallstreetsystems.com X X X

Xenomorph Product/ http://www.xenomorph.co.uk X X
toolkit

289

Index

.NET, 277
4Cs (of data quality), 55
20/80 rule, 115

A

Accuracy, 153
ACID Test, 161
Activity Diagram, 147
Agile Methodology Manifesto, 108
Agile Software Methodologies, 107
Algorithmic Parallelism, 172
Alpha Release, 247
Alternative Trading Systems, 262
Ambiguity, 136
Analysis, 142
Analysis Model, 99, 141, 142
Applets, 163
Application Frameworks, 274
Arbitrage, 4
Architect, 110
Artefact, 115
Asynchronous Communication, 167
ATS see Alternative Trading

Systems
Attitude Influence Matrix, 128

Attribute Lists, 149
Availability, 157

B

BA see Business Analyst
Back Office, 49
Back Testing, 21, 35, 227, 229,

230, 231, 232
Balanced Score Card, 11
Bank of International Settlements,

24
Banking Book, 73
Basel (1988) Capital Accord, 24
Basel 2 Accord, 23, 25

3 Pillar Approach, 25
Advanced Measurement

Approach, 26
Basic Indicator Approach, 26
Internal Ratings-based Methods,

26
Operational Risk, 78
Standardized Approach, 26

Baseline, 221
Batch Processing, 164, 183
Behavioural View, 143

Benchmarking, 69, 134
Best of Breed, 278
Beta Release, 247
Bias see Cognitive Bias
Bid/Ask Spread, 4
BIS see Bank of International

Settlements
Blade Technology, 154
Bleeding Edge Technology, 187
Broadcast, 168
Brokers, 4
Budget, 127

Allocator, 129
Bug, 212

Fixes, 218
Build

Breakages, 250
Process, 251
versus Buy, 101

Build Release see Development,
Release

Business
Analyst, 110
Continuity Planning, 67
Justification, 121
Process Re-engineering, 252
Services, 162

Buy versus Build, 101

C

Capability Maturity Model, 106,
240

Capital
Economic, 10, 24
Regulatory, 24
Risk, 265
Risk Adjusted Return on, 11
Tier 1–3, 24

Capital Asset Pricing Model, 10
CAPM see Capital Asset Pricing

Model

Catastrophic Impact Analysis, 70
Causal Models, 64
CBD see Component-based

Development
Change Control Plan, 119
Change Request, 119, 235, 237

Impact of, 237
Managing, 236

Checklists, 69
Class Diagrams, 145
Client–Server Applications, 160
Closed Questions, 133
Clustering, 154
CMM see Capability Maturity

Model
Code

Consistency, 226, 227
Inspection, 226
Ownership, 225, 226
Review, 225
Walkthrough, 227

Cognitive Bias, 16
Collaboration Diagrams, 145
Commission, 4
Communication, 187

Gap, 60, 133
Comparative Advantage, 261
Competitive Advantage, 273
Component, 104, 276
Component-based Development,

104, 277
Component-based Development

and Integration Forum, 277
Concurrency, 158
Concurrent Development, 240
Condition Variables, 160
Configuration Engineer, 111
Configuration Management, 235
Consistency

Market Data, 21
Model, 21

INDEX

290

Consumer, 166
Context Diagram, 135, 145
Continuous Integration, 96
Convergence

of Approaches, 5
Convexity, 71
Cost

Benefit Analysis, 266
Fixed Priced, 210
Time and Materials, 210
Variable Priced, 210

Coupling, 169
Covariance, 80
Credit Checks, 75
Credit Limit

Factors, 75
Credit Models

Reduced Form, 74
Structural, 74

Credit Quality, 73
Cross Asset Class Trading, 42
Customization, 101

D

Data
Aggregation, 151, 181
Archiving, 151
Caching, 182
Catalogues, 149
Centralization, versus

Localization and Replication,
175

Cleaning, 48, 83
Collation, 151
Consistency, 48
Dictionaries, 149
Duplication, 182
Dynamic, 55
Enrichment, 151
Entities, 144

Exponential Weighting, 83
Filtering, 181
Flow, 145
Granularity, 88
Guardians, 57
Incremental Updates, 181
Localization and Replication,

versus Centralization, 175
Location, 176
Mining, 47, 179
Modelling Diagram, 144
Normalization, 145
Ownership, 176
Parallelism, 159, 172
Quality, 55, 56
Replication, 175
Requirements, 36, 151
Services, 174
Sharing, 176
Source of, 88
Static, 55, 56, 57
Stationarity, 81
Throttling, 181
Transactional, 54
Transformers, 163
Versioning, 167
View, 143

Data Marts, 179
Data Warehouse, 46, 178

Comparison with Transaction
Systems, 47

Layering, 179
Multi-tiered, 179

Deadlock, 171
Debugging, 211
Decision Maker, 128
Decision Support Systems, 178
Decision Tree, 149
Defect, 211, 235, 237

Managing, 236
Delivery Continuum, 139
Delta, 72

291

INDEX

Denormalized, 183
Dependency see Coupling
Dependency Diagram, 149
Deployment, 251, 252, 254

Automation, 255
Big Bang, 252
Global, 254
Incremental, 252
Manual, 254
Phased Roll Out, 254
Rolling Back, 253

Design
Model, 99
Review, 225

Developer, 110
Development

Global, 113
Lead, 110
Release, 247
Strategic, 367
Tactical, 367

Diagrammatic Approaches, 137
Comparison with

Documentation, 137
Disaster Planning see Business

Continuity Planning
Disposable Software, 60, 269
Distributed Computing, 154
Distributed Parallelism see

Algorithmic Parallelism
Diversification, 79, 87, 261
DLL Hell, 274
Documentation

Architecture, 117
Functional Analysis, 117
Implementation, 117
Project, 115, 116
Requirements, 117
Review of Current, 133
Style Guides, 219
Support, 119
Templates, 116

Testing, 118
User, 119

DOM see Middleware, Distributed
Object-orientated

Due Diligence, 203
Dynamic

Parallelism, 172
View, 143

E

EAI see Enterprise Application
Integration

ECN see Electronic Communication
Networks

Electronic Communication
Networks, 262

Electronic Trading, 262
Empirical Approaches, 61
Enterprise

Application Integration, 165
Application Interfacing, 279
System, 153

Entity Matrices, 149
Entity Relationship Diagram, 144
Environment

Build, 249
Development, 248
Production, 251
Quality Assurance, 250
UAT, 250

Equity Hurdle Rate, 11
ERD see Entity Relationship

Diagram
Error Detection, 55
Evaluator, 129
Event Farm Replication, 172
Event Sensitivity, 62
Exception-based Monitoring, 56
Exposure-based Approaches, 17
Extensible Protocols, 169

INDEX

292

External Interfaces, 163
Extreme Event Theory, 79
Extreme Programming, 97

F

Failover, 219
Hot, 156
Warm, 156

Fat Client Applications, 161
Fault Tolerance, 155
Feature Driven Development, 107
Financial

Control, 49
Impact, 5
Market Fragmentation, 34

Fixed Income Market, 71
Flexibility, 272, 273
Flow

Chart, 146
Trading, 18

Front End Projects, 186
Front Office, 49
Function Matrices, 149
Functional Parallelism see

Algorithmic Parallelism
Functional View, 143
Functionality

Gap, 123
Replacing, 232
Sources of Discrepancy, 232
Standardization, 178

Fungibility, 57
Fuzzy Logic, 64

G

Game Theory, 64
Gamma, 72
Gap Analysis, 134

Gatekeeper, 129
General Ledger, 50
Geometric Parallelism see Data

Parallelism
GL see General Ledger
Good is Good Enough, 140
Green Field Sites, 58, 122
Grid Computing, 155
Group Think, 113

H

Hedge, 4, 43
Hierarchical Storage Management,

151
Historical Simulation, 81
Hot Fixes see Patches
HSM see Hierarchical Storage

Management
Hybrid Process Decomposition,

172

I

IDL see Interface Definition
Language

Impact Probability Matrix, 67
Implementation Model, 99
Incident Management, 77
Incremental

Delivery, 186
Release, 247

Influence, 128
Information

Delivery, 152
Overload, 86

Integrated Application
Architecture see Service-
orientated Application
Architecture

293

INDEX

Integration, 278
Chasm, 279
Costs, 103
Failure, 98
Framework, 164, 275

Interaction Diagram, 147
Interface Definition Language, 167
Interfacing, 278
Intermediaries, 4
Intermediate Release, 247
Internal Ratings-based Methods see

Basel 2 Accord, Internal Ratings-
based Methods

Interviews, 133
Intra-process Concurrency, 159
IRB see Basel 2 Accord, Internal

Ratings-based Methods
ISDA Credit definitions, 41
Iterative Spiral Development, 96

J

J2EE, 277
Java, 277

K

Key Risk Indicator, 69
Key Success Criteria, 141
Kick Off Meeting, 125
KRI see Key Risk Indicator
Kurtosis, 82

L

Latency, 156
Learning Curve, 187
Legacy Systems, 58, 169
Limit

Hard, 20

Monitoring, 18, 87
Soft, 20

Liquidity, 4, 34, 71
Logical Model, 99
Loss

Database, 77
External, 79
Maintainability, 155

Distribution, 74, 78
Intangible, 8

M

Major Release, 246
Manageability, 157
Market Makers, 4
Market Participants, 4
Maximising Benefits, 139
Message Passing, 159
Messaging

Certified, 168
Guaranteed, 168
Reliable, 168
Transactional, 168

Meta-data, 152
Middle Office, 49
Middleware, 165

Distributed Object-orientated,
166

Language-based, 165
Message-orientated, 165
Remote Procedure Call, 165

Milestone, 189
Minor Release, 246
Mispricing see Arbitrage
Misunderstanding see

Communication, Gap
Model

Abstraction, 98
Calibration, 35
Development, 229

INDEX

294

Risk, 32, 33, 229
Uncertainty, 32
Validation, 35, 227, 229
Verification, 227, 229

MOM see Middleware, Message-
orientated

Money Markets, 71
Monolithic Applications, 37, 160

Comparison with Silo Trading
Systems, 39

Monte Carlo Simulations, 80
Moody’s, 73
Multi-threading, 159
Mutual Exclusion Locks, 160

N

NDA see Non-disclosure
Agreement

New Business Process, 230
Non-determinism, 171
Non-disclosure Agreement, 207
Nostro Balances, 51
N-tier Architectures, 161

O

Object-orientated
Design, 103
Software, 145

OLAP see On-line Analytical
Processing

OLTP see On-line Transaction
Processing

On-line Analytical Processing, 47,
179

On-line Transaction Processing,
179, See also Transactional
Systems

Open Questions, 133

Open Socio-technical Systems, 76
Operational

Efficiency, 13
Failure, 98
Risk Mark-up Language, 171

ORML see Operational Risk Mark-
up Language

OTC Derivatives see Over-the-
counter Derivatives

Outsourcing, 113, 261, 270
Cost of, 201
Risks, 202

Over-the-counter Derivatives, 41

P

P&L, 11, 21
Back Testing, 230
Clean, 231
Dirty, 231
Explain, 230
Realized, 231
Reconciliation, 45
Unrealized, 231

Pair Programming, 108
Parallelism, 171
Patches, 248
Pattern, 104

Analysis, 104
Anti-, 199, 227
Architecture, 104
Design, 104, 224

Performance, 156
Bottlenecks, 181
Distributed Calculations, 181
Factors Impacting, 180
Localized Calculations, 181

Persistence, 164, 173
Physical Model, 99
Pizza Box Clustering, 154
PM see Project Manager

295

INDEX

Point Release see Incremental
Release

Point-to-point Communication,
167

Politics, 127
Portfolio Effect see Diversification
Predictive Models, 62
Presentation Layers, 163
Price

Risk, 7
Tradable, 262

Problem Discovery, 130
Convergent Methods, 130, 131
Divergent Methods, 130, 131

Procedural Diagram, 149
Process, 159

Change, 124
Concurrency, 159
Farm, 172
Models, 64, 65
Shadowing, 133
Simulation, 65

Process Improvement see Total
Quality Management

Producer, 166
Product Control, 49
Programme Office, 110
Project

Assessment, 185, 242
Communicating Status, 196
Co-ordination, 196
in Crisis, 270
Delivery, 200
Dependencies, 194
Drivers, 195
Execution, 193
Failure, 98, 269
Framework, 271
Key Risk Indicators, 199
Levelling, 190
Management, 185, 192, 193
Manager, 110, 185

Plan, 119, 189
Procedures, 118
Proposal, 117, 121
Refining, 193
Review, 200
Risk, 187
Risk Appetite, 244
Risk Mitigation, 198
Risk, Structural, 269
Risk Transfer, 210
Standards, 118
Tracking, 217
Workbook, 116

Proposal see Project, Proposal
Prototype, 100, 232
Publish/Subscribe, 167
Pull Strategy, 166
Push Strategy, 166

Q

QA see Quality Assurance
QA Lead see Quality Assurance Lead
Qualitative Measurement, 15
Quality Assurance, 247

Lead, 111
Quantitative Measurement, 15
Questionnaires, 69, 133

R

Race Condition, 149, 219
RAG Reporting see Red, Amber,

Green Reporting
RAROC see Capital, Risk Adjusted

Return on
Ratings Agency, See Moody’s,

Standard & Poor’s
Rational Unified Process®, 96
Reconciliation, 211, 232
Recovery Rate, 73

INDEX

296

Red, Amber, Green Reporting,
197

Re-engineering, 122
Refactoring, 224, 227
Regulatory Environment, 23
Relative Value Trading, 4
Release Candidate, 247
Release Notes, 255
Reliability, 155
Remote Procedure Call see

Middleware, Remote Procedure
Call

Replaceability, 105, 277
Request for Proposal, 201

Checklist, 206, 207
Contractual Stage, 208
Format, 204
Outline, 204
Timeline, 207
Vendor Communication, 208

Requirements
Analysis, 121
Gathering, 121, 125
Hierarchy, 135
Model, 99
Prioritizing, 135, 139
Process, 125, 126
Transformation into Analysis

Model, 142
User Interaction, 132
Validating, 141

Resources, 190, 195
Allocator, 129
Fungibility, 226
Pool, 272

Reuse, 104, 105, 276
Reverse Engineering, 131, 257
RfP see Request for Proposal
Richness/Cheapness Analysis see

Relative Value Trading
Risk, 3, 272

Aggregation, 32, 43, 44, 87

Allocation see Risk Bucketing
Analysis, 85
Appetite, 10, 14
Assessment, 68
Avoidable, 15
Basis, 272
Breakdown, 86
Bucketing, 53
Categories, 7
Changes in, 84
Concentration, 20, 85
Cost of, 11
Counterparty, 75
Credit, 7, 73, 264
Credit Add On, 74
Credit Default, 73
Credit Exposure, 73
Decomposition, 52
Drivers, 5
Equivalence, 62
Events, 5
Factors, 52
Hierarchies, 16
Incremental, 87
Interaction, 263, 264
Internal Ratings-based

Approaches, 26, 74
Limits, 20, 75
Management, 11

Approaches, 14
Drivers for Change, 22
Hierarchy, 19
Improvement Cycle, 15
On Demand, 26
Real-time, 26
Sources of Data, 50
Temple, 8

Mapping, 67
Marginal, 87
Market, 7, 70, 264
Market, Commodity, 70
Market, Equity, 70
Market, Interest Rate, 70
Measurement, 15

297

INDEX

Mitigation, 14
Modelling, 30

Bottom Up, 31
Impact of Inconsistent

Approaches, 45
Top Down, 30

Monitoring, 265
Narrative, 69
Non-linearity, 85
Offsetting, 21
Operational, 7, 76, 264
Operational, Reactionary

Approach to, 76
Operational, Transparency, 77
Pillar, 9
Prepayment, 71
Proprietary, 18
Recalculation of, 85
Reduction see Risk, Mitigation
Reporting, 85
Residual, 272
and Return, 10
Sources, 6
Sources of Error, 34
Specific, 52
Strategic, 270
and System Design, 187
Technology, 267
Transformation, 266
Translation, 51
Unavoidable, 15
Unknown, 272

Risk-adjusted Rate of Return, 185
Robustness Analysis, 143
Roll Out, 252
RPC see Middleware, Remote

Procedure Call
RUP® see Rational Unified Process®

S

Safe System, 262
Sarbanes-Oxley Act, 24

Satisficing, 140
Scalability, 154

and Design, 160
Horizontal, 154
Vertical, 154

Scale-out see Scalability, Horizontal
Scale-up see Scalability, Vertical
Scenario Analysis, 67
Schema, 171

Snowflake, 179
Scope, 133, 195, 217

Clarifying, 135
Control, 134
Creep, 194, 269

Scorecards, 69
Scrum, 107
Security, 157
Semantic Volatility, 49, 179
Semaphores, 160
Sequence Diagram, 147
Service-orientated Application

Architecture, 161
Shared Memory, 159
Sign Off, 115, 250
Silo Trading System, 37

Comparison with Monolithic
Trading Systems, 39

Development of, 41
Simulation, 80
Single-threading, 159
Single Tier Architectures, 160, See

also Monolithic Applications
Skew, 82
SMART Objectives, 191
Smoke Tests, 220
Snapshot Release, 247, 250
SOAP, 171
Software, 214

Approaches, 93, 274
Automation, 256
Component see Component
Constraints, 100

INDEX

298

Cost of Formalism, 105
Development, 93

Disorder see Software,
Entropy

Lifecycle, 93
Risk, 97, 272

Economics, 105
Entropy, 109
Frameworks, 274
Libraries, 274
Module, 276
Over Engineered, 224
Problem Reports, 238
Quality, 224
Roles, 109
Service Guarantees, 278
Standards, 100
Tools, 256
Trust, 278
Under Engineered, 224
Versioning, 245

Source Code Control, 240
Branching, 242
Branching Policy, 243
Check In, 241
Check Out, 240
Commit see Source Code

Control, Check In
Conflicts in Changes, 241
Deferred Branching, 243
Early Branching, 243
Features of, 244
Lazy Branching see Deferred

Branching
Locking, 241
Mainline Branch, 242
Merge Process, 241
Tag, 242, 250

Specialist, 129
Speculators, 4
Sponsor, 110, 127
SPR see Software Problem Reports
Spread, 71

Spreadsheet, 40, 273
Audit, 274

SQL, 165
Stakeholder, 97, 114

Expectations, 200
Standard & Poor’s, 73
State Diagram, 146
Static Views, 143
Statistical

Approaches, 17
Models, 64

Stove Pipe see Silo Trading System
STP see Straight Through Processing
Straight Through Processing, 22
Strategic

Development, 267
Drift, 267
Failure, 98
Road Map, 268
Strategic Control, 10, 201

Stress Testing, 66, See also Load
Testing

Structural Uncertainties, 272
Structured Interviews, 69
Stub Functionality, 217
Style Guides, 118
Subjective Assessments, 16
Subjectively Rational, 129
Supplier see Vendor
Support Staff, 111, 251
Swap Market, 71
Swim Lane Diagram, 147
Synchronous Communication, 166
System

Administration, 111, 251
Configuration, 236
Interaction, 137
Migration, 249
Model see Design, Model
Quality, 194

Systemic Risk, 5, 23

299

INDEX

T

Task Interdependency, 190
Team

-based Development, 112
Communication, 114, 187
Co-ordination, 113
Cross Functional, 113
Dynamics, 187
Global, 113
Performance, 114

Test Designer, 111
Testing

Automation, 222
Black Box, 215, 217
Completeness of, 213
Concentration, 214
Data, 213, 221
Environment, 221
Failure, 219, 222
Glass Box see Testing, White

Box
Integration, 216
Integration with the Software

Process, 212
Interaction, 215
Key Risk Indicators, 214
Levels of, 215
Load, 219, 250
Operational, 218
Overload, 219
Performance, 214, 218, 250
Process, 212, 221
Regression, 218
Reporting, 223
Risk-based Approach, 213
Score, 223
Specification, 215, 217
Stress, 219
Structural, 215
Types of, 218
Unit, 216
Usability, 219

User Acceptance, 217, 250
White Box, 215

Thin Client Applications, 161, 163
Three-tier Architectures, 161
Throughput, 156
Tiger Teams, 199
Time Estimating, 189
Time Value, 185
Total Quality Management, 223
TP Monitors see Transaction

Processing Monitors
TQM see Total Quality

Management
Traceability, 115, 238, 245
Trading Volume

Impact on Trading System
Design, 41

Traffic Light Reporting see Red,
Amber, Green Reporting

Training, 191
Transaction, 161

Distributed, 177
Two-phase Commit, 177

Transaction Costs, 76
Transaction Processing Monitors,

157
Transactional Systems, 46

Comparison with Data
Warehouses, 47

Two-tier Architectures, 160

U

UAT see Testing, User Acceptance
Testing

UML see Unified Modelling
Language

Uncertainty, 3
Unified Modelling Language, 153
Universal Approach, 271
Unspecified Behaviour, 219

INDEX

300

Upgrade Path, 369
Upgrading, 248, 253
Use Case, 139, 217
User, 129

V

V Software Lifecycle Model, 95
Value at Risk, 65, 79, 231

Comparison of Approaches, 82
VaR see Value at Risk
Variance, 79, 80
Vega, 72
Vendor

Dispute Management, 243
Factors Influencing, 204
Identifying, 203
References, 205
Relationship, 208
Selection, 203
Vendor Tie In, 101, 209

Version Control see Source Code
Control

W

Waterfall Lifecycle Model, 94
Weak Signal, 272
Web Browser, 163
Web Services, 164
Workshops, 69, 133
WSDL, 171

X

XML, 170
XP see Software Development

Lifecycle, Extreme
Programming

Y

Yield, 71
Yield Curve, 71

301

INDEX

	Cover
	Contents
	List of figures
	List of tables
	Preface
	List of abbreviations
	PART I An Introduction to the Risk Management Process
	1 What is risk management?
	Sources and drivers of risk
	Risk and return
	Risk management and risk mitigation
	Approaches to identifying and measuring risk
	Approaches to managing risk
	Drivers for change
	The move to real time and on-demand risk information

	2 The Risk Management Challenge
	Modelling risk
	Data requirements for risk management
	The risk management hierarchy
	Transactional and warehousing systems
	Sources of risk and loss information
	Data manipulation
	Data issues
	The design legacy

	3 Functional Requirements for a Risk Management Solution
	Risk identification and measurement
	Asset class specific risk management
	VaR approaches
	The risk analysis process
	Changes in risk with event levels and time
	Risk analysis and reporting

	PART II Risk Management Technology
	4 The Software Development Lifecycle
	A risk based approach to the software delivery process
	Modelling the process of implementing a system
	Prototyping
	Buy versus build
	The need for formalizing processes
	Agile methodologies
	Why software needs to be replaced
	Key roles in the software process
	Team-based development
	Documentation of the project

	5 Requirements Gathering and Analysis
	Re-engineering workflow and technology
	Requirements gathering
	System analysis
	The data requirements for a risk management system

	6 System Design and Implementation
	Physical architectural and implementation requirements
	Achieving concurrency in processing
	The design architecture
	The integrated service-orientated application architecture
	Integration and middleware
	Approaches to parallelism in software
	Data management, processing and persistence
	Data warehouses
	Producing high performance solutions

	7 Project Management
	The project management process
	Request for proposal (RfP) process

	8 Quality Management and Testing
	The software testing process
	Total quality management
	Validating, verifying and backtesting approaches and models
	Replacing existing functionality

	9 Deployment, Configuration and Change Management
	Defects and change requests
	Software problem reports (SPRs)
	Source code control
	Maintaining traceability
	Versioning system releases
	Development, build and testing environments
	Software deployment
	Tools and process automation

	PART III Trends in Risk Management Process and Technology
	10 The Future of Risk Management Technology
	Risk management in the future
	Risk transformation and cost benefit analysis
	Strategic versus tactical
	Structural project risk
	Flexibility and managing the unknown risk
	Maintaining competitive advantage
	Development approaches
	The component revolution
	The integration and interface gap
	Conclusion

	Appendix
	Risk management system providers and consultants

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

